These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 33441936)
21. Combining physics-based models with deep learning image synthesis and uncertainty in intraoperative cone-beam CT of the brain. Zhang X; Sisniega A; Zbijewski WB; Lee J; Jones CK; Wu P; Han R; Uneri A; Vagdargi P; Helm PA; Luciano M; Anderson WS; Siewerdsen JH Med Phys; 2023 May; 50(5):2607-2624. PubMed ID: 36906915 [TBL] [Abstract][Full Text] [Related]
22. Fan beam CT image synthesis from cone beam CT image using nested residual UNet based conditional generative adversarial network. Joseph J; Biji I; Babu N; Pournami PN; Jayaraj PB; Puzhakkal N; Sabu C; Patel V Phys Eng Sci Med; 2023 Jun; 46(2):703-717. PubMed ID: 36943626 [TBL] [Abstract][Full Text] [Related]
23. Multiresolution residual deep neural network for improving pelvic CBCT image quality. Wu W; Qu J; Cai J; Yang R Med Phys; 2022 Mar; 49(3):1522-1534. PubMed ID: 35034367 [TBL] [Abstract][Full Text] [Related]
24. CBCT-Based synthetic CT image generation using conditional denoising diffusion probabilistic model. Peng J; Qiu RLJ; Wynne JF; Chang CW; Pan S; Wang T; Roper J; Liu T; Patel PR; Yu DS; Yang X Med Phys; 2024 Mar; 51(3):1847-1859. PubMed ID: 37646491 [TBL] [Abstract][Full Text] [Related]
25. Feasibility of CycleGAN enhanced low dose CBCT imaging for prostate radiotherapy dose calculation. Chan Y; Li M; Parodi K; Belka C; Landry G; Kurz C Phys Med Biol; 2023 May; 68(10):. PubMed ID: 37054740 [TBL] [Abstract][Full Text] [Related]
26. CBCT correction using a cycle-consistent generative adversarial network and unpaired training to enable photon and proton dose calculation. Kurz C; Maspero M; Savenije MHF; Landry G; Kamp F; Pinto M; Li M; Parodi K; Belka C; van den Berg CAT Phys Med Biol; 2019 Nov; 64(22):225004. PubMed ID: 31610527 [TBL] [Abstract][Full Text] [Related]
27. A cycle generative adversarial network for improving the quality of four-dimensional cone-beam computed tomography images. Usui K; Ogawa K; Goto M; Sakano Y; Kyougoku S; Daida H Radiat Oncol; 2022 Apr; 17(1):69. PubMed ID: 35392947 [TBL] [Abstract][Full Text] [Related]
28. A 4D-CBCT correction network based on contrastive learning for dose calculation in lung cancer. Cao N; Wang Z; Ding J; Zhang H; Zhang S; Gao L; Sun J; Xie K; Ni X Radiat Oncol; 2024 Feb; 19(1):20. PubMed ID: 38336759 [TBL] [Abstract][Full Text] [Related]
29. Transformer CycleGAN with uncertainty estimation for CBCT based synthetic CT in adaptive radiotherapy. Rusanov B; Hassan GM; Reynolds M; Sabet M; Rowshanfarzad P; Bucknell N; Gill S; Dass J; Ebert M Phys Med Biol; 2024 Jan; 69(3):. PubMed ID: 38198726 [No Abstract] [Full Text] [Related]
30. Cone Beam CT (CBCT) Based Synthetic CT Generation Using Deep Learning Methods for Dose Calculation of Nasopharyngeal Carcinoma Radiotherapy. Xue X; Ding Y; Shi J; Hao X; Li X; Li D; Wu Y; An H; Jiang M; Wei W; Wang X Technol Cancer Res Treat; 2021; 20():15330338211062415. PubMed ID: 34851204 [No Abstract] [Full Text] [Related]
31. Deep learning based synthetic CT from cone beam CT generation for abdominal paediatric radiotherapy. Szmul A; Taylor S; Lim P; Cantwell J; Moreira I; Zhang Y; D'Souza D; Moinuddin S; Gaze MN; Gains J; Veiga C Phys Med Biol; 2023 May; 68(10):. PubMed ID: 36996837 [No Abstract] [Full Text] [Related]
32. Improvement of Image Quality of Cone-beam CT Images by Three-dimensional Generative Adversarial Network. Hase T; Nakao M; Imanishi K; Nakamura M; Matsuda T Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2843-2846. PubMed ID: 34891840 [TBL] [Abstract][Full Text] [Related]
33. Pseudo-medical image-guided technology based on 'CBCT-only' mode in esophageal cancer radiotherapy. Sun H; Yang Z; Zhu J; Li J; Gong J; Chen L; Wang Z; Yin Y; Ren G; Cai J; Zhao L Comput Methods Programs Biomed; 2024 Mar; 245():108007. PubMed ID: 38241802 [TBL] [Abstract][Full Text] [Related]
35. Combining scatter reduction and correction to improve image quality in cone-beam computed tomography (CBCT). Jin JY; Ren L; Liu Q; Kim J; Wen N; Guan H; Movsas B; Chetty IJ Med Phys; 2010 Nov; 37(11):5634-44. PubMed ID: 21158275 [TBL] [Abstract][Full Text] [Related]
36. Multimodal image translation via deep learning inference model trained in video domain. Fan J; Liu Z; Yang D; Qiao J; Zhao J; Wang J; Hu W BMC Med Imaging; 2022 Jul; 22(1):124. PubMed ID: 35836126 [TBL] [Abstract][Full Text] [Related]
37. CBCT-based synthetic CT generation using generative adversarial networks with disentangled representation. Liu J; Yan H; Cheng H; Liu J; Sun P; Wang B; Mao R; Du C; Luo S Quant Imaging Med Surg; 2021 Dec; 11(12):4820-4834. PubMed ID: 34888192 [TBL] [Abstract][Full Text] [Related]
38. CBCT-based synthetic CT generated using CycleGAN with HU correction for adaptive radiotherapy of nasopharyngeal carcinoma. Jihong C; Kerun Q; Kaiqiang C; Xiuchun Z; Yimin Z; Penggang B Sci Rep; 2023 Apr; 13(1):6624. PubMed ID: 37095147 [TBL] [Abstract][Full Text] [Related]
39. Synthetic CT generation from CBCT using double-chain-CycleGAN. Deng L; Ji Y; Huang S; Yang X; Wang J Comput Biol Med; 2023 Jul; 161():106889. PubMed ID: 37244147 [TBL] [Abstract][Full Text] [Related]
40. Generating synthesized computed tomography from CBCT using a conditional generative adversarial network for head and neck cancer patients. Zhang Y; Ding SG; Gong XC; Yuan XX; Lin JF; Chen Q; Li JG Technol Cancer Res Treat; 2022; 21():15330338221085358. PubMed ID: 35262422 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]