These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 33442525)

  • 1. Hydrogen production in single-chamber microbial electrolysis cells using Ponceau S dye.
    Cebecioglu R; Akagunduz D; Catal T
    3 Biotech; 2021 Jan; 11(1):27. PubMed ID: 33442525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental data of a catalytic decolorization of Ponceau 4R dye using the cobalt (II)/NaHCO
    Macías-Quiroga IF; Rojas-Méndez EF; Giraldo-Gómez GI; Sanabria-González NR
    Data Brief; 2020 Jun; 30():105463. PubMed ID: 32346556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decolorization of azo dyes under batch anaerobic and sequential anaerobic/aerobic conditions.
    Işik M; Sponza DT
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(4):1107-27. PubMed ID: 15137723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen and methane production from swine wastewater using microbial electrolysis cells.
    Wagner RC; Regan JM; Oh SE; Zuo Y; Logan BE
    Water Res; 2009 Mar; 43(5):1480-8. PubMed ID: 19138783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical decolorization of methyl orange powered by bioelectricity from single-chamber microbial fuel cells.
    Zhang B; Wang Z; Zhou X; Shi C; Guo H; Feng C
    Bioresour Technol; 2015 Apr; 181():360-2. PubMed ID: 25661516
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Baena-Baldiris D; Montes-Robledo A; Baldiris-Avila R
    ACS Omega; 2020 Nov; 5(43):28146-28157. PubMed ID: 33163797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye.
    Zhao DH; Gao HW
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):97-105. PubMed ID: 19263103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen production using cocaine metabolite in microbial electrolysis cells.
    Kilinc B; Akagunduz D; Ozdemir M; Kul A; Catal T
    3 Biotech; 2023 Nov; 13(11):382. PubMed ID: 37920191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Onset Investigation on Dynamic Change of Biohythane Generation and Microbial Structure in Dual-chamber versus Single-chamber Microbial Electrolysis Cells.
    Luo S; Liu F; Fu B; He K; Yang H; Zhang X; Liang P; Huang X
    Water Res; 2021 Aug; 201():117326. PubMed ID: 34147740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies.
    Oh SE; Logan BE
    Water Res; 2005 Nov; 39(19):4673-82. PubMed ID: 16289673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater.
    Cusick RD; Bryan B; Parker DS; Merrill MD; Mehanna M; Kiely PD; Liu G; Logan BE
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):2053-63. PubMed ID: 21305277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane.
    Call D; Logan BE
    Environ Sci Technol; 2008 May; 42(9):3401-6. PubMed ID: 18522125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells.
    Lu L; Xing D; Xie T; Ren N; Logan BE
    Biosens Bioelectron; 2010 Aug; 25(12):2690-5. PubMed ID: 20537524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell.
    Sun J; Hu YY; Bi Z; Cao YQ
    Bioresour Technol; 2009 Jul; 100(13):3185-92. PubMed ID: 19269168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads.
    Enayatzamir K; Alikhani HA; Yakhchali B; Tabandeh F; Rodríguez-Couto S
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):145-53. PubMed ID: 19259719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-voltage pulse electrolysis method for the degradation of anthraquinone and azo dyes in chloride medium by anodic oxidation on Ti/IrO
    Chao HJ; Xue D; Jiang W; Li D; Hu Z; Kang J; Liu D
    Water Environ Res; 2020 May; 92(5):779-788. PubMed ID: 31697421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening, identification and optimization of a yeast strain, Candida palmioleophila JKS4, capable of azo dye decolorization.
    Jafari N; Kasra-Kermanshahi R; Soudi MR
    Iran J Microbiol; 2013 Dec; 5(4):434-40. PubMed ID: 25848518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells-microbial electrolysis cell (MFCs-MEC) coupled system.
    Jiang Y; Su M; Li D
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2720-31. PubMed ID: 24425301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of azo dye decolorization and determination of cathode microorganism profile in air-cathode microbial fuel cells.
    Kumru M; Eren H; Catal T; Bermek H; Akarsubaşi AT
    Environ Technol; 2012 Sep; 33(16-18):2167-75. PubMed ID: 23240212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.