These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 33442710)
41. Tweet content related to sexually transmitted diseases: no joking matter. Gabarron E; Serrano JA; Wynn R; Lau AY J Med Internet Res; 2014 Oct; 16(10):e228. PubMed ID: 25289463 [TBL] [Abstract][Full Text] [Related]
42. Detection of Hate Speech in COVID-19-Related Tweets in the Arab Region: Deep Learning and Topic Modeling Approach. Alshalan R; Al-Khalifa H; Alsaeed D; Al-Baity H; Alshalan S J Med Internet Res; 2020 Dec; 22(12):e22609. PubMed ID: 33207310 [TBL] [Abstract][Full Text] [Related]
43. Perceptions of Menthol Cigarettes Among Twitter Users: Content and Sentiment Analysis. Rose SW; Jo CL; Binns S; Buenger M; Emery S; Ribisl KM J Med Internet Res; 2017 Feb; 19(2):e56. PubMed ID: 28242592 [TBL] [Abstract][Full Text] [Related]
44. Using twitter to examine smoking behavior and perceptions of emerging tobacco products. Myslín M; Zhu SH; Chapman W; Conway M J Med Internet Res; 2013 Aug; 15(8):e174. PubMed ID: 23989137 [TBL] [Abstract][Full Text] [Related]
45. Machine Learning to Detect Self-Reporting of Symptoms, Testing Access, and Recovery Associated With COVID-19 on Twitter: Retrospective Big Data Infoveillance Study. Mackey T; Purushothaman V; Li J; Shah N; Nali M; Bardier C; Liang B; Cai M; Cuomo R JMIR Public Health Surveill; 2020 Jun; 6(2):e19509. PubMed ID: 32490846 [TBL] [Abstract][Full Text] [Related]
46. #Covid-19: An exploratory investigation of hashtag usage on Twitter. Petersen K; Gerken JM Health Policy; 2021 Apr; 125(4):541-547. PubMed ID: 33487479 [TBL] [Abstract][Full Text] [Related]
47. Emergency Physician Twitter Use in the COVID-19 Pandemic as a Potential Predictor of Impending Surge: Retrospective Observational Study. Margus C; Brown N; Hertelendy AJ; Safferman MR; Hart A; Ciottone GR J Med Internet Res; 2021 Jul; 23(7):e28615. PubMed ID: 34081612 [TBL] [Abstract][Full Text] [Related]
48. JUUL the heartbreaker: Twitter analysis of cardiovascular health perceptions of vaping. Hong T; Wu J; Wijaya D; Xuan Z; Fetterman JL Tob Induc Dis; 2021; 19():01. PubMed ID: 33437228 [TBL] [Abstract][Full Text] [Related]
49. Examining Tweet Content and Engagement of Canadian Public Health Agencies and Decision Makers During COVID-19: Mixed Methods Analysis. Slavik CE; Buttle C; Sturrock SL; Darlington JC; Yiannakoulias N J Med Internet Res; 2021 Mar; 23(3):e24883. PubMed ID: 33651705 [TBL] [Abstract][Full Text] [Related]
50. Framing of and Attention to COVID-19 on Twitter: Thematic Analysis of Hashtags. Tahamtan I; Potnis D; Mohammadi E; Miller LE; Singh V J Med Internet Res; 2021 Sep; 23(9):e30800. PubMed ID: 34406961 [TBL] [Abstract][Full Text] [Related]
51. Language and Sentiment Regarding Telemedicine and COVID-19 on Twitter: Longitudinal Infodemiology Study. Pollack CC; Gilbert-Diamond D; Alford-Teaster JA; Onega T J Med Internet Res; 2021 Jun; 23(6):e28648. PubMed ID: 34086591 [TBL] [Abstract][Full Text] [Related]
52. Whose Tweets on COVID-19 Gain the Most Attention: Celebrities, Political, or Scientific Authorities? Kamiński M; Szymańska C; Nowak JK Cyberpsychol Behav Soc Netw; 2021 Feb; 24(2):123-128. PubMed ID: 32986469 [TBL] [Abstract][Full Text] [Related]
53. Analysis of Twitter Activity and Engagement From Annual Meetings of the Society for Vascular Surgery and the Society of Interventional Radiology. Suh D; Yoon W; Lavingia KS; Amendola MF Ann Vasc Surg; 2021 Oct; 76():481-487. PubMed ID: 33831529 [TBL] [Abstract][Full Text] [Related]
54. Tracking Public Attitudes Toward COVID-19 Vaccination on Tweets in Canada: Using Aspect-Based Sentiment Analysis. Jang H; Rempel E; Roe I; Adu P; Carenini G; Janjua NZ J Med Internet Res; 2022 Mar; 24(3):e35016. PubMed ID: 35275835 [TBL] [Abstract][Full Text] [Related]
55. The Impact of COVID-19 on Sport in Twitter: A Quantitative and Qualitative Content Analysis. González LM; Devís-Devís J; Pellicer-Chenoll M; Pans M; Pardo-Ibañez A; García-Massó X; Peset F; Garzón-Farinós F; Pérez-Samaniego V Int J Environ Res Public Health; 2021 Apr; 18(9):. PubMed ID: 33923042 [TBL] [Abstract][Full Text] [Related]
56. The Resurgence of Cyber Racism During the COVID-19 Pandemic and its Aftereffects: Analysis of Sentiments and Emotions in Tweets. Dubey AD JMIR Public Health Surveill; 2020 Oct; 6(4):e19833. PubMed ID: 32936772 [TBL] [Abstract][Full Text] [Related]
57. Vaccine Hesitancy and Anti-Vaccination Attitudes during the Start of COVID-19 Vaccination Program: A Content Analysis on Twitter Data. Küçükali H; Ataç Ö; Palteki AS; Tokaç AZ; Hayran O Vaccines (Basel); 2022 Jan; 10(2):. PubMed ID: 35214620 [TBL] [Abstract][Full Text] [Related]
58. Breast cancer prevention and treatment misinformation on Twitter: An analysis of two languages. Yussof I; Ab Muin NF; Mohd M; Hatah E; Mohd Tahir NA; Mohamed Shah N Digit Health; 2023; 9():20552076231205742. PubMed ID: 37808244 [TBL] [Abstract][Full Text] [Related]
59. Impact of COVID-19: A Text Mining Analysis of Twitter Data in Spanish Language. Osakwe ZT; Cortés YI Hisp Health Care Int; 2021 Dec; 19(4):239-245. PubMed ID: 34323101 [TBL] [Abstract][Full Text] [Related]
60. Geospatial analysis of misinformation in COVID-19 related tweets. Forati AM; Ghose R Appl Geogr; 2021 Aug; 133():102473. PubMed ID: 34103772 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]