These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 3344282)

  • 1. Picosecond resolution of indole anisotropy decays and spectral relaxation by 2 GHz frequency-domain fluorometry.
    Lakowicz JR; Szmacinski H; Gryczynski I
    Photochem Photobiol; 1988 Jan; 47(1):31-41. PubMed ID: 3344282
    [No Abstract]   [Full Text] [Related]  

  • 2. Picosecond resolution of tyrosine fluorescence and anisotropy decays by 2-GHz frequency-domain fluorometry.
    Lakowicz JR; Laczko G; Gryczynski I
    Biochemistry; 1987 Jan; 26(1):82-90. PubMed ID: 3828310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Picosecond resolution of oxytocin tyrosyl fluorescence by 2 GHz frequency-domain fluorometry.
    Lakowicz JR; Laczko G; Gryczynski I
    Biophys Chem; 1986 Jul; 24(2):97-100. PubMed ID: 3756310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intensity and anisotropy decays of [Leu5] enkephalin tyrosyl fluorescence by 10 GHz frequency-domain fluorometry.
    Lakowicz JR; Gryczynski I; Laczko G; Wiczk W
    Biophys Chem; 1993 Jul; 47(1):33-40. PubMed ID: 8364147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lifetime distributions and anisotropy decays of indole fluorescence in cyclohexane/ethanol mixtures by frequency-domain fluorometry.
    Gryczynski I; Wiczk W; Johnson ML; Lakowicz JR
    Biophys Chem; 1988 Dec; 32(2-3):173-85. PubMed ID: 3251567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gigahertz frequency-domain fluorometry: resolution of complex decays, picosecond processes and future developments.
    Lakowicz JR; Laczko G; Gryczynski I; Szmacinski H; Wiczk W
    J Photochem Photobiol B; 1988 Nov; 2(3):295-311. PubMed ID: 3148695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resolution of the lifetimes and correlation times of the intrinsic tryptophan fluorescence of human hemoglobin solutions using 2 GHz frequency-domain fluorometry.
    Bucci E; Malak H; Fronticelli C; Gryczynski I; Lakowicz JR
    J Biol Chem; 1988 May; 263(15):6972-7. PubMed ID: 3366762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropy decays of indole, melittin monomer and melittin tetramer by frequency-domain fluorometry and multi-wavelength global analysis.
    Lakowicz JR; Gryczynski I; Cherek H; Laczko G
    Biophys Chem; 1991 Mar; 39(3):241-51. PubMed ID: 17014769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced resolution of fluorescence anisotropy decays by simultaneous analysis of progressively quenched samples. Applications to anisotropic rotations and to protein dynamics.
    Lakowicz JR; Cherek H; Gryczynski I; Joshi N; Johnson ML
    Biophys J; 1987 May; 51(5):755-68. PubMed ID: 3593873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Background suppression in frequency-domain fluorometry.
    Lakowicz JR; Gryczynski I; Gryczynski Z; Johnson ML
    Anal Biochem; 2000 Jan; 277(1):74-85. PubMed ID: 10610691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Picosecond fluorescence relaxation spectroscopy of the calcium-discharged photoproteins aequorin and obelin.
    van Oort B; Eremeeva EV; Koehorst RB; Laptenok SP; van Amerongen H; van Berkel WJ; Malikova NP; Markova SV; Vysotski ES; Visser AJ; Lee J
    Biochemistry; 2009 Nov; 48(44):10486-91. PubMed ID: 19810751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence decay characteristics of indole compounds revealed by time-resolved area-normalized emission spectroscopy.
    Otosu T; Nishimoto E; Yamashita S
    J Phys Chem A; 2009 Mar; 113(12):2847-53. PubMed ID: 19254015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resolution of complex anisotropy decays by variable frequency phase-modulation fluorometry: a stimulation study.
    Maliwal BP; Lakowicz JR
    Biochim Biophys Acta; 1986 Sep; 873(2):161-72. PubMed ID: 3756173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency domain fluorometry with pulsed light-emitting diodes.
    Herman P; Vecer J
    Ann N Y Acad Sci; 2008; 1130():56-61. PubMed ID: 18596332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of internal motion of single tryptophan in Streptomyces subtilisin inhibitor from its picosecond time-resolved fluorescence.
    Tanaka F; Tamai N; Mataga N; Tonomura B; Hiromi K
    Biophys J; 1994 Aug; 67(2):874-80. PubMed ID: 7948700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distance-dependent fluorescence quenching of tryptophan by acrylamide.
    Lakowicz JR; Zelent B; Gryczynski I; Kuśba J; Johnson ML
    Photochem Photobiol; 1994 Sep; 60(3):205-14. PubMed ID: 7972370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SNAREpin Assembly: Kinetic and Thermodynamic Approaches.
    Li F; Pincet F
    Methods Mol Biol; 2019; 1860():71-93. PubMed ID: 30317499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic studies on human serum albumin and methemalbumin: optical, steady-state, and picosecond time-resolved fluorescence studies, and kinetics of substrate oxidation by methemalbumin.
    Kamal JK; Behere DV
    J Biol Inorg Chem; 2002 Mar; 7(3):273-83. PubMed ID: 11935351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A turn-on indole-based sensor for hydrogen sulfate ion.
    Wan CF; Yang ST; Lin HY; Chang YJ; Wu AT
    Luminescence; 2014 Aug; 29(5):500-3. PubMed ID: 24105911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational relaxation of p-phenylenevinylene trimers in solution studied by picosecond time-resolved fluorescence.
    Di Paolo RE; Seixas de Melo J; Pina J; Burrows HD; Morgado J; Maçanita AL
    Chemphyschem; 2007 Dec; 8(18):2657-64. PubMed ID: 17994663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.