These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33443160)

  • 1. Association of aerobic glycolysis with the structural connectome reveals a benefit-risk balancing mechanism in the human brain.
    Chen Y; Lin Q; Liao X; Zhou C; He Y
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33443160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic glycolysis and tau deposition in preclinical Alzheimer's disease.
    Vlassenko AG; Gordon BA; Goyal MS; Su Y; Blazey TM; Durbin TJ; Couture LE; Christensen JJ; Jafri H; Morris JC; Raichle ME; Benzinger TL
    Neurobiol Aging; 2018 Jul; 67():95-98. PubMed ID: 29655050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Features of spatial and functional segregation and integration of the primate connectome revealed by trade-off between wiring cost and efficiency.
    Chen Y; Wang S; Hilgetag CC; Zhou C
    PLoS Comput Biol; 2017 Sep; 13(9):e1005776. PubMed ID: 28961235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constraints and spandrels of interareal connectomes.
    Rubinov M
    Nat Commun; 2016 Dec; 7():13812. PubMed ID: 27924867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structural-functional connectome and the default mode network of the human brain.
    Horn A; Ostwald D; Reisert M; Blankenburg F
    Neuroimage; 2014 Nov; 102 Pt 1():142-51. PubMed ID: 24099851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wiring cost and topological participation of the mouse brain connectome.
    Rubinov M; Ypma RJ; Watson C; Bullmore ET
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):10032-7. PubMed ID: 26216962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Default mode network and Alzheimer's disease].
    Vergara E F; Behrens MI
    Rev Med Chil; 2013 Mar; 141(3):375-80. PubMed ID: 23900330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Riemannian approach to predicting brain function from the structural connectome.
    Benkarim O; Paquola C; Park BY; Royer J; Rodríguez-Cruces R; Vos de Wael R; Misic B; Piella G; Bernhardt BC
    Neuroimage; 2022 Aug; 257():119299. PubMed ID: 35636736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal relationship between subthreshold amyloid accumulation and aerobic glycolysis in the human brain.
    Goyal MS; Gordon BA; Couture LE; Flores S; Xiong C; Morris JC; Raichle ME; L-S Benzinger T; Vlassenko AG
    Neurobiol Aging; 2020 Dec; 96():165-175. PubMed ID: 33011615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Normative pathways in the functional connectome.
    Leming M; Su L; Chattopadhyay S; Suckling J
    Neuroimage; 2019 Jan; 184():317-334. PubMed ID: 30223061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prefrontal connectomics: from anatomy to human imaging.
    Haber SN; Liu H; Seidlitz J; Bullmore E
    Neuropsychopharmacology; 2022 Jan; 47(1):20-40. PubMed ID: 34584210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Basis of Large-Scale Functional Connectivity in the Mouse.
    Grandjean J; Zerbi V; Balsters JH; Wenderoth N; Rudin M
    J Neurosci; 2017 Aug; 37(34):8092-8101. PubMed ID: 28716961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain aerobic glycolysis and motor adaptation learning.
    Shannon BJ; Vaishnavi SN; Vlassenko AG; Shimony JS; Rutlin J; Raichle ME
    Proc Natl Acad Sci U S A; 2016 Jun; 113(26):E3782-91. PubMed ID: 27217563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward a standardized structural-functional group connectome in MNI space.
    Horn A; Blankenburg F
    Neuroimage; 2016 Jan; 124(Pt A):310-322. PubMed ID: 26327244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kuramoto model simulation of neural hubs and dynamic synchrony in the human cerebral connectome.
    Schmidt R; LaFleur KJ; de Reus MA; van den Berg LH; van den Heuvel MP
    BMC Neurosci; 2015 Sep; 16():54. PubMed ID: 26329640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. System-level matching of structural and functional connectomes in the human brain.
    Osmanlıoğlu Y; Tunç B; Parker D; Elliott MA; Baum GL; Ciric R; Satterthwaite TD; Gur RE; Gur RC; Verma R
    Neuroimage; 2019 Oct; 199():93-104. PubMed ID: 31141738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Commute Time as a Method to Explore Brain Functional Connectomes.
    Sato JR; Sato CM; Silva MKC; Biazoli CE
    Brain Connect; 2019 Mar; 9(2):155-161. PubMed ID: 30398376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical Analysis of Tract-Tracing Experiments Demonstrates a Dense, Complex Cortical Network in the Mouse.
    Ypma RJ; Bullmore ET
    PLoS Comput Biol; 2016 Sep; 12(9):e1005104. PubMed ID: 27617835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of macaque brain DMRI connectome by neuron tracing and myelin stain data.
    Zhang T; Kong J; Jing K; Chen H; Jiang X; Li L; Guo L; Lu J; Hu X; Liu T
    Comput Med Imaging Graph; 2018 Nov; 69():9-20. PubMed ID: 30170273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cross-modal, cross-species comparison of connectivity measures in the primate brain.
    Reid AT; Lewis J; Bezgin G; Khundrakpam B; Eickhoff SB; McIntosh AR; Bellec P; Evans AC
    Neuroimage; 2016 Jan; 125():311-331. PubMed ID: 26515902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.