These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33443254)

  • 1. Bulk supercooled water
    Puibasset J; Judeinstein P; Zanotti JM
    Phys Chem Chem Phys; 2021 Jan; 23(3):2275-2285. PubMed ID: 33443254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear quantum effects on the thermodynamic, structural, and dynamical properties of water.
    Eltareb A; Lopez GE; Giovambattista N
    Phys Chem Chem Phys; 2021 Mar; 23(11):6914-6928. PubMed ID: 33729222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron Paramagnetic Resonance Measurements of Four Nitroxide Probes in Supercooled Water Explained by Molecular Dynamics Simulations.
    McMillin PJ; Alegrete M; Peric M; Luchko T
    J Phys Chem B; 2020 May; 124(19):3962-3972. PubMed ID: 32301326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Monte Carlo simulation study of methane clathrate hydrates confined in slit-shaped pores.
    Chakraborty SN; Gelb LD
    J Phys Chem B; 2012 Feb; 116(7):2183-97. PubMed ID: 22320214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of supercooled water in clusters and bulk and its relation to the two-state picture of water: results from the TIP4P-ice model.
    Constantin JG; Fris AR; Appignanesi G; Carignano M; Szleifer I; Corti H
    Eur Phys J E Soft Matter; 2011 Nov; 34(11):126. PubMed ID: 22113397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-structure thermodynamics for the TIP4P/2005 model of water covering supercooled and deeply stretched regions.
    Biddle JW; Singh RS; Sparano EM; Ricci F; González MA; Valeriani C; Abascal JL; Debenedetti PG; Anisimov MA; Caupin F
    J Chem Phys; 2017 Jan; 146(3):034502. PubMed ID: 28109212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement and maximum in the isobaric specific-heat capacity measurements of deeply supercooled water using ultrafast calorimetry.
    Pathak H; Späh A; Esmaeildoost N; Sellberg JA; Kim KH; Perakis F; Amann-Winkel K; Ladd-Parada M; Koliyadu J; Lane TJ; Yang C; Lemke HT; Oggenfuss AR; Johnson PJM; Deng Y; Zerdane S; Mankowsky R; Beaud P; Nilsson A
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33526683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of Methylamine on Amorphous Ice under Interstellar Conditions. A Grand Canonical Monte Carlo Simulation Study.
    Horváth RA; Hantal G; Picaud S; Szőri M; Jedlovszky P
    J Phys Chem A; 2018 Apr; 122(13):3398-3412. PubMed ID: 29537265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replica exchange MD simulations of two-dimensional water in graphene nanocapillaries: rhombic versus square structures, proton ordering, and phase transitions.
    Li S; Schmidt B
    Phys Chem Chem Phys; 2019 Aug; 21(32):17640-17654. PubMed ID: 31364628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces.
    Gerber RB; Varner ME; Hammerich AD; Riikonen S; Murdachaew G; Shemesh D; Finlayson-Pitts BJ
    Acc Chem Res; 2015 Feb; 48(2):399-406. PubMed ID: 25647299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure-induced transformations in glassy water: A computer simulation study using the TIP4P/2005 model.
    Wong J; Jahn DA; Giovambattista N
    J Chem Phys; 2015 Aug; 143(7):074501. PubMed ID: 26298139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of surface hydrophilicity and hydration on the rotational relaxation of supercooled water on graphene oxide surfaces.
    M R; Ayappa KG
    Phys Chem Chem Phys; 2020 Jul; 22(28):16080-16095. PubMed ID: 32638750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible relations between supercooled and glassy confined water and amorphous bulk ice.
    Swenson J
    Phys Chem Chem Phys; 2018 Dec; 20(48):30095-30103. PubMed ID: 30511075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radial distribution functions and densities for the SPC/E, TIP4P and TIP5P models for liquid water and ices Ih, Ic, II, III, IV, V, VI, VII, VIII, IX, XI and XII.
    Vega C; McBride C; Sanz E; Abascal JL
    Phys Chem Chem Phys; 2005 Apr; 7(7):1450-6. PubMed ID: 19787967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Second inflection point of water surface tension in the deeply supercooled regime revealed by entropy anomaly and surface structure using molecular dynamics simulations.
    Wang X; Binder K; Chen C; Koop T; Pöschl U; Su H; Cheng Y
    Phys Chem Chem Phys; 2019 Feb; 21(6):3360-3369. PubMed ID: 30693356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water.
    Singh RS; Biddle JW; Debenedetti PG; Anisimov MA
    J Chem Phys; 2016 Apr; 144(14):144504. PubMed ID: 27083735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the time required to freeze water.
    Espinosa JR; Navarro C; Sanz E; Valeriani C; Vega C
    J Chem Phys; 2016 Dec; 145(21):211922. PubMed ID: 28799362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The melting temperature of the most common models of water.
    Vega C; Sanz E; Abascal JL
    J Chem Phys; 2005 Mar; 122(11):114507. PubMed ID: 15836229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface tension of the most popular models of water by using the test-area simulation method.
    Vega C; de Miguel E
    J Chem Phys; 2007 Apr; 126(15):154707. PubMed ID: 17461659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic picture of vitrification of water through complex specific heat and entropy: A journey through "no man's land".
    Saito S; Bagchi B
    J Chem Phys; 2019 Feb; 150(5):054502. PubMed ID: 30736680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.