These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33443273)

  • 1. Active Brownian particles moving through disordered landscapes.
    Olsen KS; Angheluta L; Flekkøy EG
    Soft Matter; 2021 Mar; 17(8):2151-2157. PubMed ID: 33443273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active Brownian and inertial particles in disordered environments: Short-time expansion of the mean-square displacement.
    Breoni D; Schmiedeberg M; Löwen H
    Phys Rev E; 2020 Dec; 102(6-1):062604. PubMed ID: 33465967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active Brownian particle in homogeneous media of different viscosities: numerical simulations.
    Lisin EA; Vaulina OS; Lisina II; Petrov OF
    Phys Chem Chem Phys; 2021 Aug; 23(30):16248-16257. PubMed ID: 34308937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overdamped Brownian dynamics in piecewise-defined energy landscapes.
    Gray TH; Yong EH
    Phys Rev E; 2020 May; 101(5-1):052123. PubMed ID: 32575297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of flexible active Brownian dumbbells in the absence and the presence of shear flow.
    Winkler RG
    Soft Matter; 2016 Apr; 12(16):3737-49. PubMed ID: 26980630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collective motion of active Brownian particles with polar alignment.
    Martín-Gómez A; Levis D; Díaz-Guilera A; Pagonabarraga I
    Soft Matter; 2018 Apr; 14(14):2610-2618. PubMed ID: 29569673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brownian self-driven particles on the surface of a sphere.
    Apaza L; Sandoval M
    Phys Rev E; 2017 Aug; 96(2-1):022606. PubMed ID: 28950475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of structure formation by confined dipolar active particles.
    Telezki V; Klumpp S
    Soft Matter; 2020 Dec; 16(46):10537-10547. PubMed ID: 33078178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ramifications of disorder on active particles in one dimension.
    Ben Dor Y; Woillez E; Kafri Y; Kardar M; Solon AP
    Phys Rev E; 2019 Nov; 100(5-1):052610. PubMed ID: 31869918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic phases of active matter systems with quenched disorder.
    Sándor C; Libál A; Reichhardt C; Olson Reichhardt CJ
    Phys Rev E; 2017 Mar; 95(3-1):032606. PubMed ID: 28415221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixtures of self-propelled particles interacting with asymmetric obstacles.
    Rojas-Vega M; de Castro P; Soto R
    Eur Phys J E Soft Matter; 2023 Oct; 46(10):95. PubMed ID: 37819444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dependent inertia of self-propelled particles: The Langevin rocket.
    Sprenger AR; Jahanshahi S; Ivlev AV; Löwen H
    Phys Rev E; 2021 Apr; 103(4-1):042601. PubMed ID: 34005997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertial effects on rectification and diffusion of active Brownian particles in an asymmetric channel.
    Khatri N; Kapral R
    J Chem Phys; 2023 Mar; 158(12):124903. PubMed ID: 37003720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold Active Motion: How Time-Independent Disorder Affects the Motion of Self-Propelled Agents.
    Peruani F; Aranson IS
    Phys Rev Lett; 2018 Jun; 120(23):238101. PubMed ID: 29932716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inertial and geometrical effects of self-propelled elliptical Brownian particles.
    Montana F; Camporeale C; Porporato A; Rondoni L
    Phys Rev E; 2023 May; 107(5-1):054607. PubMed ID: 37328983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic thermodynamics of active Brownian particles.
    Ganguly C; Chaudhuri D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032102. PubMed ID: 24125209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inertial effects of self-propelled particles: From active Brownian to active Langevin motion.
    Löwen H
    J Chem Phys; 2020 Jan; 152(4):040901. PubMed ID: 32007042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleation pathway and kinetics of phase-separating active Brownian particles.
    Richard D; Löwen H; Speck T
    Soft Matter; 2016 Jun; 12(24):5257-64. PubMed ID: 27126952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-induced self-assembly of active rectification devices.
    Stenhammar J; Wittkowski R; Marenduzzo D; Cates ME
    Sci Adv; 2016 Apr; 2(4):e1501850. PubMed ID: 27051883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.
    Feng M; Hou Z
    Soft Matter; 2017 Jun; 13(25):4464-4481. PubMed ID: 28580481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.