BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33443443)

  • 1. Colloidal Stability and Concentration Effects on Nanoparticle Heat Delivery for Magnetic Fluid Hyperthermia.
    Pilati V; Gomide G; Gomes RC; Goya GF; Depeyrot J
    Langmuir; 2021 Jan; 37(3):1129-1140. PubMed ID: 33443443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetoviscous Property and Hyperthermia Effect of Amorphous Nanoparticle Aqueous Ferrofluids.
    Yang C; Yu M; Zhao S; Tian Y; Bian X
    Nanoscale Res Lett; 2018 Nov; 13(1):378. PubMed ID: 30470929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-Term Colloidally Stable Aqueous Dispersions of ≤5 nm Spinel Ferrite Nanoparticles.
    Eckardt M; Thomä SLJ; Dulle M; Hörner G; Weber B; Förster S; Zobel M
    ChemistryOpen; 2020 Nov; 9(11):1214-1220. PubMed ID: 33294306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloidal stability of magnetic iron oxide nanoparticles: influence of natural organic matter and synthetic polyelectrolytes.
    Ghosh S; Jiang W; McClements JD; Xing B
    Langmuir; 2011 Jul; 27(13):8036-43. PubMed ID: 21650201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core-shell nanoparticles.
    Fabris F; Lima E; De Biasi E; Troiani HE; Vásquez Mansilla M; Torres TE; Fernández Pacheco R; Ibarra MR; Goya GF; Zysler RD; Winkler EL
    Nanoscale; 2019 Feb; 11(7):3164-3172. PubMed ID: 30520920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approaches on Ferrofluid Synthesis and Applications: Current Status and Future Perspectives.
    Oehlsen O; Cervantes-Ramírez SI; Cervantes-Avilés P; Medina-Velo IA
    ACS Omega; 2022 Feb; 7(4):3134-3150. PubMed ID: 35128226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Fluorous Ferrofluids and Effects of the Nanoparticle Coatings on Field- and Temperature-Dependent Magnetizations.
    Lin FC; van de Wouw HL; Campàs O; Sletten EM; Zink JI
    Chem Mater; 2023 Oct; 35(19):7957-7966. PubMed ID: 37840777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon-coated Fe
    Imran M; Zouli N; Ahamad T; Alshehri SM; Chandan MR; Hussain S; Aziz A; Dar MA; Khan A
    Nanoscale Adv; 2021 Apr; 3(7):1962-1975. PubMed ID: 36133094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic magnetic fluid hyperthermia studies of carboxyl functionalized hydrophilic superparamagnetic iron oxide nanoparticles based ferrofluids.
    Kandasamy G; Sudame A; Bhati P; Chakrabarty A; Kale SN; Maity D
    J Colloid Interface Sci; 2018 Mar; 514():534-543. PubMed ID: 29289736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain and bone cancer targeting by a ferrofluid composed of superparamagnetic iron-oxide/silica/carbon nanoparticles (earthicles).
    Wu VM; Huynh E; Tang S; Uskoković V
    Acta Biomater; 2019 Apr; 88():422-447. PubMed ID: 30711662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Ferrofluids Made of Iron Oxide Nanoflowers: Interplay between Carrier Fluid and Magnetic Properties.
    Spizzo F; Sgarbossa P; Sieni E; Semenzato A; Dughiero F; Forzan M; Bertani R; Del Bianco L
    Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29113079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrokinetic characterization of superparamagnetic nanoparticle-aptamer conjugates: design of new highly specific probes for miniaturized molecular diagnostics.
    Girardot M; d'Orlyé F; Varenne A
    Anal Bioanal Chem; 2014 Feb; 406(4):1089-98. PubMed ID: 23925800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural perspective on revealing heat dissipation behavior of CoFe
    Shams SF; Ghazanfari MR; Pettinger S; Tavabi AH; Siemensmeyer K; Smekhova A; Dunin-Borkowski RE; Westmeyer GG; Schmitz-Antoniak C
    Phys Chem Chem Phys; 2020 Dec; 22(46):26728-26741. PubMed ID: 33078790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colloidal dispersions of oxide nanoparticles in ionic liquids: elucidating the key parameters.
    Riedl JC; Akhavan Kazemi MA; Cousin F; Dubois E; Fantini S; Loïs S; Perzynski R; Peyre V
    Nanoscale Adv; 2020 Apr; 2(4):1560-1572. PubMed ID: 36132302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.
    Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F
    J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced biomedical applications of iron oxide nanostructures based ferrofluids.
    Imran M; Affandi AM; Alam MM; Khan A; Khan AI
    Nanotechnology; 2021 Jul; 32(42):. PubMed ID: 34252891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning of magnetic dipolar interactions of maghemite nanoparticles embedded in polyelectrolyte layer-by-layer films.
    Paterno LG; Sinnecker EH; Soler MA; Sinnecker JP; Novak MA; Morais PC
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6672-8. PubMed ID: 22962805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable monodisperse nanomagnetic colloidal suspensions: An overview.
    Ramimoghadam D; Bagheri S; Abd Hamid SB
    Colloids Surf B Biointerfaces; 2015 Sep; 133():388-411. PubMed ID: 26073507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adjusting the Néel relaxation time of Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia.
    Fabris F; Lohr JH; Lima E; de Almeida AA; Troiani H; Rodríguez LM; Vásquez Mansilla M; Aguirre M; Goya GF; Rinaldi D; Ghirri A; Peddis D; Fiorani D; Zysler RD; De Biasi E; Winkler E
    Nanotechnology; 2020 Oct; ():. PubMed ID: 33086203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro hyperthermia with improved colloidal stability and enhanced SAR of magnetic core/shell nanostructures.
    Patil RM; Thorat ND; Shete PB; Otari SV; Tiwale BM; Pawar SH
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():702-709. PubMed ID: 26652424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.