These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33444002)

  • 1. Chemical Bath Deposition of ZnO Nanowires Using Copper Nitrate as an Additive for Compensating Doping.
    Lausecker C; Salem B; Baillin X; Chaix-Pluchery O; Roussel H; Labau S; Pelissier B; Appert E; Consonni V
    Inorg Chem; 2021 Feb; 60(3):1612-1623. PubMed ID: 33444002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the pH on the Formation and Doping Mechanisms of ZnO Nanowires Using Aluminum Nitrate and Ammonia.
    Verrier C; Appert E; Chaix-Pluchery O; Rapenne L; Rafhay Q; Kaminski-Cachopo A; Consonni V
    Inorg Chem; 2017 Nov; 56(21):13111-13122. PubMed ID: 29045134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Path of Gallium from Chemical Bath into ZnO Nanowires: Mechanisms of Formation and Incorporation.
    Gaffuri P; Appert E; Chaix-Pluchery O; Rapenne L; Salaün M; Consonni V
    Inorg Chem; 2019 Aug; 58(15):10269-10279. PubMed ID: 31310521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay Effects in the Co-Doping of ZnO Nanowires with Al and Ga Using Chemical Bath Deposition.
    Baillard A; Appert E; Weber M; Jacob V; Roussel H; Rapenne L; Chaix-Pluchery O; Consonni V
    Inorg Chem; 2023 Jan; 62(3):1165-1177. PubMed ID: 36631932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating the growth of chemically deposited ZnO nanowires and the formation of nitrogen- and hydrogen-related defects using pH adjustment.
    Villafuerte J; Sarigiannidou E; Donatini F; Kioseoglou J; Chaix-Pluchery O; Pernot J; Consonni V
    Nanoscale Adv; 2022 Mar; 4(7):1793-1807. PubMed ID: 36132162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Temperature PLD-Growth of Ultrathin ZnO Nanowires by Using Zn
    Shkurmanov A; Sturm C; Franke H; Lenzner J; Grundmann M
    Nanoscale Res Lett; 2017 Dec; 12(1):134. PubMed ID: 28235370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the growth of single crystal ZnO nanowires by tuning the atomic layer deposition parameters of the ZnO seed layer.
    Galan-Gonzalez A; Gallant A; Zeze DA; Atkinson D
    Nanotechnology; 2019 Jul; 30(30):305602. PubMed ID: 30974422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Temperature Growth of ZnO Nanowires from Gravure-Printed ZnO Nanoparticle Seed Layers for Flexible Piezoelectric Devices.
    Garcia AJL; Sico G; Montanino M; Defoor V; Pusty M; Mescot X; Loffredo F; Villani F; Nenna G; Ardila G
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34071555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile, wafer-scale compatible growth of ZnO nanowires
    Huang YC; Zhou J; Nomenyo K; Ionescu RE; Gokarna A; Lerondel G
    Nanoscale Adv; 2020 Nov; 2(11):5288-5295. PubMed ID: 36132032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Well-ordered ZnO nanowires with controllable inclination on semipolar ZnO surfaces by chemical bath deposition.
    Cossuet T; Roussel H; Chauveau JM; Chaix-Pluchery O; Thomassin JL; Appert E; Consonni V
    Nanotechnology; 2018 Nov; 29(47):475601. PubMed ID: 30251706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation mechanisms of ZnO nanowires on polycrystalline Au seed layers for piezoelectric applications.
    Lausecker C; Salem B; Baillin X; Roussel H; Sarigiannidou E; Bassani F; Appert E; Labau S; Consonni V
    Nanotechnology; 2019 Aug; 30(34):345601. PubMed ID: 31035270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparative Study on the Effects of Au, ZnO and AZO Seed Layers on the Performance of ZnO Nanowire-Based Piezoelectric Nanogenerators.
    Justeau C; Slimani Tlemcani T; Poulin-Vittrant G; Nadaud K; Alquier D
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31394800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Polyethylenimine and Its Molecular Weight on the Chemical Bath Deposition of ZnO Nanowires.
    Parize R; Garnier JD; Appert E; Chaix-Pluchery O; Consonni V
    ACS Omega; 2018 Oct; 3(10):12457-12464. PubMed ID: 31457976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and structural-optical properties of Ga-doped ZnO nanowires by hot-walled pulsed laser deposition method.
    Kim K; Lee DY; Park DH; Kim S; Lee SY
    J Nanosci Nanotechnol; 2012 May; 12(5):4173-6. PubMed ID: 22852366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): understanding the role of HMTA in ZnO nanowire growth.
    McPeak KM; Le TP; Britton NG; Nickolov ZS; Elabd YA; Baxter JB
    Langmuir; 2011 Apr; 27(7):3672-7. PubMed ID: 21361384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly C-oriented (002) plane ZnO nanowires synthesis.
    Nizar BM; Lajnef M; Chaste J; Chtourou R; Herth E
    RSC Adv; 2023 May; 13(22):15077-15085. PubMed ID: 37207101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of MBE-Grown ZnTe and ZnTe/Zn Nanowires and Their Structural Properties.
    Gas K; Kret S; Zaleszczyk W; Kamińska E; Sawicki M; Wojtowicz T; Szuszkiewicz W
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ doping of ZnO nanowires using aerosol-assisted chemical vapour deposition.
    Pung SY; Choy KL; Hou X; Dinsdale K
    Nanotechnology; 2010 Aug; 21(34):345602. PubMed ID: 20671359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Temperature Solution Synthesis of Au-Modified ZnO Nanowires for Highly Efficient Hydrogen Nanosensors.
    Lupan O; Postica V; Wolff N; Su J; Labat F; Ciofini I; Cavers H; Adelung R; Polonskyi O; Faupel F; Kienle L; Viana B; Pauporté T
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32115-32126. PubMed ID: 31385698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc Oxide-Encapsulated Copper Nanowires for Stable Transparent Conductors.
    Wang B; Yu S; Huang L
    Nanomaterials (Basel); 2023 Sep; 13(19):. PubMed ID: 37836300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.