BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33444278)

  • 1. New approach for designing cVEP BCI stimuli based on superposition of edge responses.
    Yasinzai MN; Ider YZ
    Biomed Phys Eng Express; 2020 Jun; 6(4):045018. PubMed ID: 33444278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards solving of the Illiteracy phenomenon for VEP-based brain-computer interfaces.
    Volosyak I; Rezeika A; Benda M; Gembler F; Stawicki P
    Biomed Phys Eng Express; 2020 May; 6(3):035034. PubMed ID: 33438679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic detection of code-modulated visual evoked potentials using novel covariance estimators and short-time EEG signals.
    Zarei A; Mohammadzadeh Asl B
    Comput Biol Med; 2022 Aug; 147():105771. PubMed ID: 35792474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Code-modulated visual evoked potentials using fast stimulus presentation and spatiotemporal beamformer decoding.
    Wittevrongel B; Van Wolputte E; Van Hulle MM
    Sci Rep; 2017 Nov; 7(1):15037. PubMed ID: 29118386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatic and high-frequency cVEP-based BCI paradigm.
    Aminaka D; Makino S; Rutkowski TM
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1906-9. PubMed ID: 26736655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Density Electroencephalogram Facilitates the Detection of Small Stimuli in Code-Modulated Visual Evoked Potential Brain-Computer Interfaces.
    Sun Q; Zhang S; Dong G; Pei W; Gao X; Wang Y
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 120-target brain-computer interface based on code-modulated visual evoked potentials.
    Sun Q; Zheng L; Pei W; Gao X; Wang Y
    J Neurosci Methods; 2022 Jun; 375():109597. PubMed ID: 35427686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From full calibration to zero training for a code-modulated visual evoked potentials for brain-computer interface.
    Thielen J; Marsman P; Farquhar J; Desain P
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33690182
    [No Abstract]   [Full Text] [Related]  

  • 10. Reliability-based automatic repeat request for short code modulation visual evoked potentials in brain computer interfaces.
    Sato J; Washizawa Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():562-5. PubMed ID: 26736324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of Visual Stimulus Sequence in a Brain-Computer Interface Based on Code Modulated Visual Evoked Potentials.
    Behboodi M; Mahnam A; Marateb H; Rabbani H
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2762-2772. PubMed ID: 33320813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature.
    Xu M; Qi H; Wan B; Yin T; Liu Z; Ming D
    J Neural Eng; 2013 Apr; 10(2):026001. PubMed ID: 23369924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broad-Band Visually Evoked Potentials: Re(con)volution in Brain-Computer Interfacing.
    Thielen J; van den Broek P; Farquhar J; Desain P
    PLoS One; 2015; 10(7):e0133797. PubMed ID: 26208328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward a hybrid brain-computer interface based on repetitive visual stimuli with missing events.
    Wu Y; Li M; Wang J
    J Neuroeng Rehabil; 2016 Jul; 13(1):66. PubMed ID: 27460070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel c-VEP BCI Paradigm for Increasing the Number of Stimulus Targets Based on Grouping Modulation With Different Codes.
    Wei Q; Liu Y; Gao X; Wang Y; Yang C; Lu Z; Gong H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1178-1187. PubMed ID: 29877842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Brain-Computer Interface Based on Miniature-Event-Related Potentials Induced by Very Small Lateral Visual Stimuli.
    Xu M; Xiao X; Wang Y; Qi H; Jung TP; Ming D
    IEEE Trans Biomed Eng; 2018 May; 65(5):1166-1175. PubMed ID: 29683431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A visual brain-computer interface as communication aid for patients with amyotrophic lateral sclerosis.
    Verbaarschot C; Tump D; Lutu A; Borhanazad M; Thielen J; van den Broek P; Farquhar J; Weikamp J; Raaphorst J; Groothuis JT; Desain P
    Clin Neurophysiol; 2021 Oct; 132(10):2404-2415. PubMed ID: 34454267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cVEP Training Data Validation-Towards Optimal Training Set Composition from Multi-Day Data.
    Stawicki P; Volosyak I
    Brain Sci; 2022 Feb; 12(2):. PubMed ID: 35203998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of code-modulated visual evoked potentials using adaptive modified covariance beamformer and EEG signals.
    Zarei A; Mohammadzadeh Asl B
    Comput Methods Programs Biomed; 2022 Jun; 221():106859. PubMed ID: 35569239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.