These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33444278)

  • 21. A high-speed brain speller using steady-state visual evoked potentials.
    Nakanishi M; Wang Y; Wang YT; Mitsukura Y; Jung TP
    Int J Neural Syst; 2014 Sep; 24(6):1450019. PubMed ID: 25081427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modelling the brain response to arbitrary visual stimulation patterns for a flexible high-speed Brain-Computer Interface.
    Nagel S; Spüler M
    PLoS One; 2018; 13(10):e0206107. PubMed ID: 30346983
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly Interactive Brain-Computer Interface Based on Flicker-Free Steady-State Motion Visual Evoked Potential.
    Han C; Xu G; Xie J; Chen C; Zhang S
    Sci Rep; 2018 Apr; 8(1):5835. PubMed ID: 29643430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces.
    Zhu F; Jiang L; Dong G; Gao X; Wang Y
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An online hybrid BCI system based on SSVEP and EMG.
    Lin K; Cinetto A; Wang Y; Chen X; Gao S; Gao X
    J Neural Eng; 2016 Apr; 13(2):026020. PubMed ID: 26902294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based brain-computer interface (BCI).
    Hwang HJ; Hwan Kim D; Han CH; Im CH
    Brain Res; 2013 Jun; 1515():66-77. PubMed ID: 23587933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electric field encephalography for brain activity monitoring.
    Versek C; Frasca T; Zhou J; Chowdhury K; Sridhar S
    J Neural Eng; 2018 Aug; 15(4):046027. PubMed ID: 29749347
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High Frequency SSVEP-BCI With Hardware Stimuli Control and Phase-Synchronized Comb Filter.
    Chabuda A; Durka P; Zygierewicz J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):344-352. PubMed ID: 28961117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stimulus Specificity of Brain-Computer Interfaces Based on Code Modulation Visual Evoked Potentials.
    Wei Q; Feng S; Lu Z
    PLoS One; 2016; 11(5):e0156416. PubMed ID: 27243454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison between wire and wireless EEG acquisition systems based on SSVEP in an Independent-BCI.
    Tello RM; Müller SM; Bastos-Filho T; Ferreira A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():22-5. PubMed ID: 25569887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How to build a fast and accurate code-modulated brain-computer interface.
    Ramírez Torres JA; Daly I
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33887702
    [No Abstract]   [Full Text] [Related]  

  • 34. Assessment of high-frequency steady-state visual evoked potentials from below-the-hairline areas for a brain-computer interface based on Depth-of-Field.
    Floriano A; Delisle-Rodriguez D; Diez PF; Bastos-Filho TF
    Comput Methods Programs Biomed; 2020 Feb; 184():105271. PubMed ID: 31881401
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Four-Class Phase-Coded SSVEP BCI at 60Hz Using Refresh Rate.
    Jiang L; Wang Y; Pei W; Chen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6331-6334. PubMed ID: 31947290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Implementing a calibration-free SSVEP-based BCI system with 160 targets.
    Chen Y; Yang C; Ye X; Chen X; Wang Y; Gao X
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34134091
    [No Abstract]   [Full Text] [Related]  

  • 37. An Online Brain-Computer Interface Based on SSVEPs Measured From Non-Hair-Bearing Areas.
    Wang YT; Nakanishi M; Wang Y; Wei CS; Cheng CK; Jung TP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):11-18. PubMed ID: 27254871
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Event-Driven AR-Process Model for EEG-Based BCIs With Rapid Trial Sequences.
    Gonzalez-Navarro P; Marghi YM; Azari B; Akcakaya M; Erdogmus D
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):798-804. PubMed ID: 30869624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using a cVEP-Based Brain-Computer Interface to Control a Virtual Agent.
    Riechmann H; Finke A; Ritter H
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jun; 24(6):692-9. PubMed ID: 26469340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.