These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 33444426)

  • 41. Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony.
    Anantharaj S; Noda S
    Small; 2020 Jan; 16(2):e1905779. PubMed ID: 31823508
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Noble metal-free hydrogen evolution catalysts for water splitting.
    Zou X; Zhang Y
    Chem Soc Rev; 2015 Aug; 44(15):5148-80. PubMed ID: 25886650
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mastering the D-Band Center of Iron-Series Metal-Based Electrocatalysts for Enhanced Electrocatalytic Water Splitting.
    Hu J; Al-Salihy A; Zhang B; Li S; Xu P
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499732
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multiscale Principles To Boost Reactivity in Gas-Involving Energy Electrocatalysis.
    Tang C; Wang HF; Zhang Q
    Acc Chem Res; 2018 Apr; 51(4):881-889. PubMed ID: 29384364
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dual Tuning of Ni-Co-A (A = P, Se, O) Nanosheets by Anion Substitution and Holey Engineering for Efficient Hydrogen Evolution.
    Fang Z; Peng L; Qian Y; Zhang X; Xie Y; Cha JJ; Yu G
    J Am Chem Soc; 2018 Apr; 140(15):5241-5247. PubMed ID: 29608305
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dimension Engineering in Noble-Metal-Based Electrocatalysts for Water Splitting.
    Yang X; Ouyang Y; Guo R; Yao Z
    Chem Rec; 2023 Feb; 23(2):e202200212. PubMed ID: 36193972
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Controllable synthesis of nickel sulfide nanocatalysts and their phase-dependent performance for overall water splitting.
    Zheng X; Han X; Zhang Y; Wang J; Zhong C; Deng Y; Hu W
    Nanoscale; 2019 Mar; 11(12):5646-5654. PubMed ID: 30865205
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Surface Defect Engineering on Perovskite Oxides as Efficient Bifunctional Electrocatalysts for Water Splitting.
    Zong R; Fang Y; Zhu C; Zhang X; Wu L; Hou X; Tao Y; Shao J
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42852-42860. PubMed ID: 34469101
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Surface Engineering on Nickel-Ruthenium Nanoalloys Attached Defective Carbon Sites as Superior Bifunctional Electrocatalysts for Overall Water Splitting.
    Peng Z; Liu J; Hu B; Yang Y; Guo Y; Li B; Li L; Zhang Z; Cui B; He L; Du M
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13842-13851. PubMed ID: 32129985
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Defect-Rich Heterogeneous MoS
    Lin J; Wang P; Wang H; Li C; Si X; Qi J; Cao J; Zhong Z; Fei W; Feng J
    Adv Sci (Weinh); 2019 Jul; 6(14):1900246. PubMed ID: 31380207
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Core-shell nanostructured electrocatalysts for water splitting.
    Yin X; Yang L; Gao Q
    Nanoscale; 2020 Aug; 12(30):15944-15969. PubMed ID: 32761000
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 2D MOFs with Ni(II), Cu(II), and Co(II) as Efficient Oxygen Evolution Electrocatalysts: Rationalization of Catalytic Performance
    Goswami A; Ghosh D; Chernyshev VV; Dey A; Pradhan D; Biradha K
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33679-33689. PubMed ID: 32633480
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Designing MOF Nanoarchitectures for Electrochemical Water Splitting.
    Zhang B; Zheng Y; Ma T; Yang C; Peng Y; Zhou Z; Zhou M; Li S; Wang Y; Cheng C
    Adv Mater; 2021 Apr; 33(17):e2006042. PubMed ID: 33749910
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Carbon Nanotube-Supported MoSe
    Najafi L; Bellani S; Oropesa-Nuñez R; Prato M; Martín-García B; Brescia R; Bonaccorso F
    ACS Nano; 2019 Mar; 13(3):3162-3176. PubMed ID: 30835996
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phosphorene-Based Electrocatalysts.
    Dinh KN; Zhang Y; Zhu J; Sun W
    Chemistry; 2020 May; 26(29):6437-6446. PubMed ID: 32030814
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Vertical Growth of 2D Amorphous FePO
    Yang L; Guo Z; Huang J; Xi Y; Gao R; Su G; Wang W; Cao L; Dong B
    Adv Mater; 2017 Dec; 29(46):. PubMed ID: 29068533
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent Progress in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction.
    Qin X; Ola O; Zhao J; Yang Z; Tiwari SK; Wang N; Zhu Y
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683662
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Several Key Factors for Efficient Electrocatalytic Water Splitting: Active Site Coordination Environment, Morphology Changes and Intermediates Identification.
    Hu C; Hu Y; Zhu A; Li M; Wei J; Zhang Y; Xie W
    Chemistry; 2022 Jun; 28(36):e202200138. PubMed ID: 35441499
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Research progress in improving the oxygen evolution reaction by adjusting the 3d electronic structure of transition metal catalysts.
    Chang H; Liang Z; Wang L; Wang C
    Nanoscale; 2022 Apr; 14(15):5639-5656. PubMed ID: 35333268
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction.
    Ding H; Liu H; Chu W; Wu C; Xie Y
    Chem Rev; 2021 Nov; 121(21):13174-13212. PubMed ID: 34523916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.