These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 33444739)

  • 1. Targeted mutagenesis in human iPSCs using CRISPR genome-editing tools.
    Long Y; Cech TR
    Methods; 2021 Jul; 191():44-58. PubMed ID: 33444739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR Del/Rei: a simple, flexible, and efficient pipeline for scarless genome editing.
    Feuer KL; Wahbeh MH; Yovo C; Rabie E; Lam AN; Abdollahi S; Young LJ; Rike B; Umamageswaran A; Avramopoulos D
    Sci Rep; 2022 Jul; 12(1):11928. PubMed ID: 35831384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high efficiency precision genome editing method with CRISPR in iPSCs.
    Singh A; Smedley GD; Rose JG; Fredriksen K; Zhang Y; Li L; Yuan SH
    Sci Rep; 2024 Apr; 14(1):9933. PubMed ID: 38688988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induced Pluripotent Stem Cells in the Era of Precise Genome Editing.
    Punetha M; Saini S; Chaudhary S; Yadav PS; Whitworth K; Green J; Kumar D; Kues WA
    Curr Stem Cell Res Ther; 2024; 19(3):307-315. PubMed ID: 36880183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Footprint-free gene mutation correction in induced pluripotent stem cell (iPSC) derived from recessive dystrophic epidermolysis bullosa (RDEB) using the CRISPR/Cas9 and piggyBac transposon system.
    Itoh M; Kawagoe S; Tamai K; Nakagawa H; Asahina A; Okano HJ
    J Dermatol Sci; 2020 Jun; 98(3):163-172. PubMed ID: 32376152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deciphering pathogenicity of variants of uncertain significance with CRISPR-edited iPSCs.
    Guo H; Liu L; Nishiga M; Cong L; Wu JC
    Trends Genet; 2021 Dec; 37(12):1109-1123. PubMed ID: 34509299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can genetic engineering-based methods for gene function identification be eclipsed by genome editing in plants? A comparison of methodologies.
    Amritha PP; Shah JM
    Mol Genet Genomics; 2021 May; 296(3):485-500. PubMed ID: 33751237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR Base Editing in Induced Pluripotent Stem Cells.
    Chang YJ; Xu CL; Cui X; Bassuk AG; Mahajan VB; Tsai YT; Tsang SH
    Methods Mol Biol; 2019; 2045():337-346. PubMed ID: 31250381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trichostatin A for Efficient CRISPR-Cas9 Gene Editing of Human Pluripotent Stem Cells.
    Molugu K; Khajanchi N; Lazzarotto CR; Tsai SQ; Saha K
    CRISPR J; 2023 Oct; 6(5):473-485. PubMed ID: 37676985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic Genome Editing by CRISPR/Cas9-Mediated Strategy to Cure Genetic Disorders in Humans: Guide for Molecular Surgeons.
    Ergoren MC; Idlibi R
    Crit Rev Eukaryot Gene Expr; 2019; 29(5):387-399. PubMed ID: 32421996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-mediated gene correction in hemophilia B patient-derived iPSCs.
    Morishige S; Mizuno S; Ozawa H; Nakamura T; Mazahery A; Nomura K; Seki R; Mouri F; Osaki K; Yamamura K; Okamura T; Nagafuji K
    Int J Hematol; 2020 Feb; 111(2):225-233. PubMed ID: 31664646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.
    Doetschman T; Georgieva T
    Circ Res; 2017 Mar; 120(5):876-894. PubMed ID: 28254804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review).
    Alagoz M; Kherad N
    Int J Mol Med; 2020 Aug; 46(2):521-534. PubMed ID: 32467995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR editing in biological and biomedical investigation.
    Huang J; Wang Y; Zhao J
    J Cell Physiol; 2018 May; 233(5):3875-3891. PubMed ID: 28786481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted Base Editing Systems Are Available for Plants.
    Marzec M; Hensel G
    Trends Plant Sci; 2018 Nov; 23(11):955-957. PubMed ID: 30224156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR-Cas9 system.
    Lyu C; Shen J; Wang R; Gu H; Zhang J; Xue F; Liu X; Liu W; Fu R; Zhang L; Li H; Zhang X; Cheng T; Yang R; Zhang L
    Stem Cell Res Ther; 2018 Apr; 9(1):92. PubMed ID: 29625575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Off- and on-target effects of genome editing in mouse embryos.
    Ayabe S; Nakashima K; Yoshiki A
    J Reprod Dev; 2019 Feb; 65(1):1-5. PubMed ID: 30518723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput assessment of mutations generated by genome editing in induced pluripotent stem cells by high-resolution melting analysis.
    Pham QT; Raad S; Mangahas CL; M'Callum MA; Raggi C; Paganelli M
    Cytotherapy; 2020 Oct; 22(10):536-542. PubMed ID: 32768274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.