These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 33445125)

  • 1. Preserving image texture while reducing radiation dose with a deep learning image reconstruction algorithm in chest CT: A phantom study.
    Franck C; Zhang G; Deak P; Zanca F
    Phys Med; 2021 Jan; 81():86-93. PubMed ID: 33445125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise and spatial resolution properties of a commercially available deep learning-based CT reconstruction algorithm.
    Solomon J; Lyu P; Marin D; Samei E
    Med Phys; 2020 Sep; 47(9):3961-3971. PubMed ID: 32506661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Third-Generation Adaptive Statistical Iterative Reconstruction Technique: Phantom Study of Image Noise, Spatial Resolution, Lesion Detectability, and Dose Reduction Potential.
    Euler A; Solomon J; Marin D; Nelson RC; Samei E
    AJR Am J Roentgenol; 2018 Jun; 210(6):1301-1308. PubMed ID: 29702019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task-based characterization of a deep learning image reconstruction and comparison with filtered back-projection and a partial model-based iterative reconstruction in abdominal CT: A phantom study.
    Racine D; Becce F; Viry A; Monnin P; Thomsen B; Verdun FR; Rotzinger DC
    Phys Med; 2020 Aug; 76():28-37. PubMed ID: 32574999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-low dose chest computed tomography: Effect of iterative reconstruction levels on image quality.
    Afadzi M; Lysvik EK; Andersen HK; Martinsen ACT
    Eur J Radiol; 2019 May; 114():62-68. PubMed ID: 31005179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of two deep learning image reconstruction algorithms in chest CT images: A task-based image quality assessment on phantom data.
    Greffier J; Frandon J; Si-Mohamed S; Dabli D; Hamard A; Belaouni A; Akessoul P; Besse F; Guiu B; Beregi JP
    Diagn Interv Imaging; 2022 Jan; 103(1):21-30. PubMed ID: 34493475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image texture, low contrast liver lesion detectability and impact on dose: Deep learning algorithm compared to partial model-based iterative reconstruction.
    Racine D; Brat HG; Dufour B; Steity JM; Hussenot M; Rizk B; Fournier D; Zanca F
    Eur J Radiol; 2021 Aug; 141():109808. PubMed ID: 34120010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance evaluation of deep learning image reconstruction algorithm for dual-energy spectral CT imaging: A phantom study.
    Li H; Li Z; Gao S; Hu J; Yang Z; Peng Y; Sun J
    J Xray Sci Technol; 2024; 32(3):513-528. PubMed ID: 38393883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CT image quality evaluation in the age of deep learning: trade-off between functionality and fidelity.
    Yang K; Cao J; Pisuchpen N; Kambadakone A; Gupta R; Marschall T; Li X; Liu B
    Eur Radiol; 2023 Apr; 33(4):2439-2449. PubMed ID: 36350391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study.
    Greffier J; Hamard A; Pereira F; Barrau C; Pasquier H; Beregi JP; Frandon J
    Eur Radiol; 2020 Jul; 30(7):3951-3959. PubMed ID: 32100091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of a Deep Learning-Based Reconstruction Algorithm with Filtered Back Projection and Iterative Reconstruction Algorithms for Pediatric Abdominopelvic CT.
    Son W; Kim M; Hwang JY; Kim YW; Park C; Choo KS; Kim TU; Jang JY
    Korean J Radiol; 2022 Jul; 23(7):752-762. PubMed ID: 35695313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning image reconstruction algorithms in low-dose radiation abdominal computed tomography: assessment of image quality and lesion diagnostic confidence.
    Yang C; Wang W; Cui D; Zhang J; Liu L; Wang Y; Li W
    Quant Imaging Med Surg; 2023 May; 13(5):3161-3173. PubMed ID: 37179954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of two versions of a deep learning image reconstruction algorithm on CT image quality and dose reduction: A phantom study.
    Greffier J; Dabli D; Frandon J; Hamard A; Belaouni A; Akessoul P; Fuamba Y; Le Roy J; Guiu B; Beregi JP
    Med Phys; 2021 Oct; 48(10):5743-5755. PubMed ID: 34418110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial resolution, noise properties, and detectability index of a deep learning reconstruction algorithm for dual-energy CT of the abdomen.
    Thor D; Titternes R; Poludniowski G
    Med Phys; 2023 May; 50(5):2775-2786. PubMed ID: 36774193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of deep-learning image reconstruction for chest CT examinations at two different dose levels.
    Svalkvist A; Fagman E; Vikgren J; Ku S; Diniz MO; Norrlund RR; Johnsson ÅA
    J Appl Clin Med Phys; 2023 Mar; 24(3):e13871. PubMed ID: 36583696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Image Quality and Detectability of Deep Learning Image Reconstruction (DLIR) Algorithm in Single- and Dual-energy CT.
    Zhong J; Shen H; Chen Y; Xia Y; Shi X; Lu W; Li J; Xing Y; Hu Y; Ge X; Ding D; Jiang Z; Yao W
    J Digit Imaging; 2023 Aug; 36(4):1390-1407. PubMed ID: 37071291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning reconstruction for contrast-enhanced CT of the upper abdomen: similar image quality with lower radiation dose in direct comparison with iterative reconstruction.
    Nam JG; Hong JH; Kim DS; Oh J; Goo JM
    Eur Radiol; 2021 Aug; 31(8):5533-5543. PubMed ID: 33555354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep-learning image reconstruction for image quality evaluation and accurate bone mineral density measurement on quantitative CT: A phantom-patient study.
    Li Y; Jiang Y; Yu X; Ren B; Wang C; Chen S; Ma D; Su D; Liu H; Ren X; Yang X; Gao J; Wu Y
    Front Endocrinol (Lausanne); 2022; 13():884306. PubMed ID: 36034436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of low-dose paranasal sinus CT imaging using a new deep learning image reconstruction technique in children compared to adaptive statistical iterative reconstruction V (ASiR-V).
    Li Y; Liu X; Zhuang XH; Wang MJ; Song XF
    BMC Med Imaging; 2022 Jun; 22(1):106. PubMed ID: 35658908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detectability of Small Low-Attenuation Lesions With Deep Learning CT Image Reconstruction: A 24-Reader Phantom Study.
    Toia GV; Zamora DA; Singleton M; Liu A; Tan E; Leng S; Shuman WP; Kanal KM; Mileto A
    AJR Am J Roentgenol; 2023 Feb; 220(2):283-295. PubMed ID: 36129222
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.