BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 33445142)

  • 1. Dynamic stability in cerebral palsy during walking and running: Predictors and regulation strategies.
    Rethwilm R; Böhm H; Haase M; Perchthaler D; Dussa CU; Federolf P
    Gait Posture; 2021 Feb; 84():329-334. PubMed ID: 33445142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearing an ultrasound probe during walking does not influence lower limb joint kinematics in adolescents with cerebral palsy and typically developing peers.
    Cenni F; Alexander N; Laatikainen-Raussi I; Sukanen M; Finni T
    Gait Posture; 2024 Jul; 112():134-139. PubMed ID: 38772125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Associations Between Muscle Synergies and Treatment Outcomes in Cerebral Palsy Are Robust Across Clinical Centers.
    Shuman BR; Goudriaan M; Desloovere K; Schwartz MH; Steele KM
    Arch Phys Med Rehabil; 2018 Nov; 99(11):2175-2182. PubMed ID: 29649451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age related progression of lower limb coordination during gait in children with cerebral palsy without a history of surgical intervention.
    Kiernan D; Malone A
    J Biomech; 2024 Jun; 171():112206. PubMed ID: 38941841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Canonical correlation between body-posture deviations and gait disorders in children with cerebral palsy.
    Szopa A; Domagalska-Szopa M; Siwiec A; Kwiecień-Czerwieniec I
    PLoS One; 2020; 15(6):e0234654. PubMed ID: 32544177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic gait stability in children with and without Down syndrome during overground walking.
    Beerse M; Alam T; Wu J
    Clin Biomech (Bristol, Avon); 2024 Jan; 111():106163. PubMed ID: 38154438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring harmonic walking development in children with unilateral cerebral palsy and typically developing toddlers: Insights from walking experience.
    De Bartolo D; Borhanazad M; Goudriaan M; Bekius A; Zandvoort CS; Buizer AI; Morelli D; Assenza C; Vermeulen RJ; Martens BHM; Iosa M; Dominici N
    Hum Mov Sci; 2024 Jun; 95():103218. PubMed ID: 38643727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Stability, Symmetry, and Smoothness of Gait in People with Neurological Health Conditions.
    Tramontano M; Orejel Bustos AS; Montemurro R; Vasta S; Marangon G; Belluscio V; Morone G; Modugno N; Buzzi MG; Formisano R; Bergamini E; Vannozzi G
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is dynamic motor control clinically important for identifying gait deviations in individuals with cerebral palsy?
    Sorek G; Goudriaan M; Schurr I; Schless SH
    Gait Posture; 2024 Jun; 111():44-47. PubMed ID: 38626568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of forward and backward gait characteristics between those with and without a history of breast cancer.
    Vallabhajosula S; Deaterly CD; Madzima TA
    Gait Posture; 2019 Oct; 74():162-168. PubMed ID: 31525654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pelvis-oriented margin of stability is robust against deviations in walking direction.
    Christensen MS; Tracy JB; Crenshaw JR
    J Biomech; 2023 Nov; 160():111812. PubMed ID: 37783187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Back geometry and mobility function changes in cerebral palsy children after backward walking training: arandomized controlled trial.
    Abdel-Aziem AA; El-Basatiny HMY; Draz AH; Aglan DAAA
    Dev Neurorehabil; 2024; 27(1-2):8-16. PubMed ID: 38597393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait stability and the relationship with energy cost of walking in polio survivors with unilateral plantarflexor weakness.
    van Duijnhoven E; van der Veen M; Koopman FS; Nollet F; Bruijn SM; Brehm MA
    Gait Posture; 2024 Jan; 107():104-111. PubMed ID: 37801868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measures of gait stability: performance on adults and toddlers at the beginning of independent walking.
    Bisi MC; Riva F; Stagni R
    J Neuroeng Rehabil; 2014 Sep; 11():131. PubMed ID: 25186796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying differences in gait adaptability across various speeds using movement synergy analysis.
    Ó'Reilly D; Federolf P
    PLoS One; 2021; 16(1):e0244582. PubMed ID: 33411749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of postural control in children with cerebral palsy: a review.
    Pavão SL; dos Santos AN; Woollacott MH; Rocha NA
    Res Dev Disabil; 2013 May; 34(5):1367-75. PubMed ID: 23466474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robot-induced perturbations of human walking reveal a selective generation of motor adaptation.
    Cajigas I; Koenig A; Severini G; Smith M; Bonato P
    Sci Robot; 2017 May; 2(6):. PubMed ID: 33157871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitous Gait Analysis through Footstep-Induced Floor Vibrations.
    Dong Y; Noh HY
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immediate application of low-intensity electrical noise reduced responses to visual perturbations during walking in individuals with cerebral palsy.
    Sansare A; Arcodia M; Lee SCK; Jeka J; Reimann H
    J Neuroeng Rehabil; 2024 Jan; 21(1):14. PubMed ID: 38281953
    [No Abstract]   [Full Text] [Related]  

  • 20. The Effect of Increased Gait Speed on Asymmetry and Variability in Children With Cerebral Palsy.
    Brændvik SM; Goihl T; Braaten RS; Vereijken B
    Front Neurol; 2019; 10():1399. PubMed ID: 32082235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.