These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Adsorption of olive leaf (Olea europaea L.) antioxidants on silk fibroin. Bayçin D; Altiok E; Ulkü S; Bayraktar O J Agric Food Chem; 2007 Feb; 55(4):1227-36. PubMed ID: 17261014 [TBL] [Abstract][Full Text] [Related]
24. Effect of incubation temperature on the self-assembly of regenerated silk fibroin: a study using AFM. Zhong J; Liu X; Wei D; Yan J; Wang P; Sun G; He D Int J Biol Macromol; 2015 May; 76():195-202. PubMed ID: 25748848 [TBL] [Abstract][Full Text] [Related]
25. Phosphate-Driven Interfacial Self-Assembly of Silk Fibroin for Continuous Noncovalent Growth of Nanothin Defect-Free Coatings. Wigham C; Fink TD; Sorci M; O'Reilly P; Park S; Kim J; Varude VR; Zha RH ACS Appl Mater Interfaces; 2024 Oct; 16(43):58121-58134. PubMed ID: 39413432 [TBL] [Abstract][Full Text] [Related]
26. Silk fibroin porous scaffolds by N Maniglio D; Bonani W; Migliaresi C; Motta A J Biomater Sci Polym Ed; 2018 Apr; 29(5):491-506. PubMed ID: 29297760 [TBL] [Abstract][Full Text] [Related]
27. pH-sensitive multiwalled carbon nanotube dispersion with silk fibroins. Kim HS; Yoon SH; Kwon SM; Jin HJ Biomacromolecules; 2009 Jan; 10(1):82-6. PubMed ID: 19053291 [TBL] [Abstract][Full Text] [Related]
28. Structure and properties of regenerated Antheraea pernyi silk fibroin in aqueous solution. Tao W; Li M; Zhao C Int J Biol Macromol; 2007 Apr; 40(5):472-8. PubMed ID: 17173967 [TBL] [Abstract][Full Text] [Related]
29. Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide. Ren H; Kulkarni DD; Kodiyath R; Xu W; Choi I; Tsukruk VV ACS Appl Mater Interfaces; 2014 Feb; 6(4):2459-70. PubMed ID: 24494630 [TBL] [Abstract][Full Text] [Related]
30. New process to form a silk fibroin porous 3-D structure. Tamada Y Biomacromolecules; 2005; 6(6):3100-6. PubMed ID: 16283733 [TBL] [Abstract][Full Text] [Related]
31. Interactions between fibroin and sericin proteins from Antheraea pernyi and Bombyx mori silk fibers. Du S; Zhang J; Zhou WT; Li QX; Greene GW; Zhu HJ; Li JL; Wang XG J Colloid Interface Sci; 2016 Sep; 478():316-23. PubMed ID: 27314644 [TBL] [Abstract][Full Text] [Related]
32. Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Ha SW; Tonelli AE; Hudson SM Biomacromolecules; 2005; 6(3):1722-31. PubMed ID: 15877399 [TBL] [Abstract][Full Text] [Related]
33. Strong and biocompatible three-dimensional porous silk fibroin/graphene oxide scaffold prepared by phase separation. Wang SD; Ma Q; Wang K; Ma PB Int J Biol Macromol; 2018 May; 111():237-246. PubMed ID: 29320721 [TBL] [Abstract][Full Text] [Related]
34. Silk fibroin solution properties related to assembly and structure. Matsumoto A; Lindsay A; Abedian B; Kaplan DL Macromol Biosci; 2008 Nov; 8(11):1006-18. PubMed ID: 18629803 [TBL] [Abstract][Full Text] [Related]
36. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities. Sangkert S; Meesane J; Kamonmattayakul S; Chai WL Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1138-49. PubMed ID: 26478414 [TBL] [Abstract][Full Text] [Related]
37. Milled non-mulberry silk fibroin microparticles as biomaterial for biomedical applications. Bhardwaj N; Rajkhowa R; Wang X; Devi D Int J Biol Macromol; 2015 Nov; 81():31-40. PubMed ID: 26226458 [TBL] [Abstract][Full Text] [Related]
39. Structural changes of Bombyx mori fibroin from silk gland to fiber as evidenced by Terahertz spectroscopy and other methods. Wu X; Wu X; Shao M; Yang B Int J Biol Macromol; 2017 Sep; 102():1202-1210. PubMed ID: 28487194 [TBL] [Abstract][Full Text] [Related]