BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 33445279)

  • 1. Femtosecond-Laser-Based 3D Printing for Tissue Engineering and Cell Biology Applications.
    Ho CMB; Mishra A; Hu K; An J; Kim YJ; Yoon YJ
    ACS Biomater Sci Eng; 2017 Oct; 3(10):2198-2214. PubMed ID: 33445279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimodal Three-Dimensional Printing for Micro-Modulation of Scaffold Stiffness Through Machine Learning.
    Kiratitanaporn W; Guan J; Berry DB; Lao A; Chen S
    Tissue Eng Part A; 2024 Jun; 30(11-12):280-292. PubMed ID: 37747804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review on the use of computational methods to characterize, design, and optimize tissue engineering scaffolds, with a potential in 3D printing fabrication.
    Zhang S; Vijayavenkataraman S; Lu WF; Fuh JYH
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1329-1351. PubMed ID: 30300964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro/Nanoarchitectonics of 3D Printed Scaffolds with Excellent Biocompatibility Prepared Using Femtosecond Laser Two-Photon Polymerization for Tissue Engineering Applications.
    Yuan Y; Chen L; Shi Z; Chen J
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards understanding the mechanism of 3D printing using protein: Femtosecond laser direct writing of microstructures made from homopeptides.
    Serien D; Narazaki A; Sugioka K
    Acta Biomater; 2023 Jul; 164():139-150. PubMed ID: 37062438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching.
    Mohanty S; Sanger K; Heiskanen A; Trifol J; Szabo P; Dufva M; Emnéus J; Wolff A
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():180-9. PubMed ID: 26838839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser printing of cells into 3D scaffolds.
    Ovsianikov A; Gruene M; Pflaum M; Koch L; Maiorana F; Wilhelmi M; Haverich A; Chichkov B
    Biofabrication; 2010 Mar; 2(1):014104. PubMed ID: 20811119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery.
    Xing JF; Zheng ML; Duan XM
    Chem Soc Rev; 2015 Aug; 44(15):5031-9. PubMed ID: 25992492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printing technology over a drug delivery for tissue engineering.
    Lee JW; Cho DW
    Curr Pharm Des; 2015; 21(12):1606-17. PubMed ID: 25594413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering.
    Raeisdasteh Hokmabad V; Davaran S; Ramazani A; Salehi R
    J Biomater Sci Polym Ed; 2017 Nov; 28(16):1797-1825. PubMed ID: 28707508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereoscopic projection lithography based 3D printing with high precision for advanced tissue engineering application.
    Ma J; Zhao S; Li Y; Hu J; Zhang L; Zhou X; Yan L
    Front Bioeng Biotechnol; 2022; 10():1074157. PubMed ID: 36466358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale 3D printing of hydrogels for cellular tissue engineering.
    You S; Li J; Zhu W; Yu C; Mei D; Chen S
    J Mater Chem B; 2018 Apr; 6(15):2187-2197. PubMed ID: 30319779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-photon polymerization for 3D biomedical scaffolds: Overview and updates.
    Jing X; Fu H; Yu B; Sun M; Wang L
    Front Bioeng Biotechnol; 2022; 10():994355. PubMed ID: 36072288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants.
    Guerra AJ; Lara-Padilla H; Becker ML; Rodriguez CA; Dean D
    Curr Drug Targets; 2019; 20(8):823-838. PubMed ID: 30648506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of photocured poly (ε-caprolactone) diacrylate/poly (ethylene glycol) diacrylate/chitosan for photopolymerization-type 3D printing tissue engineering scaffold application.
    Cheng YL; Chen F
    Mater Sci Eng C Mater Biol Appl; 2017 Dec; 81():66-73. PubMed ID: 28888018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in melt electro writing for tissue engineering for 3D printing of microporous scaffolds for tissue engineering.
    Loewner S; Heene S; Baroth T; Heymann H; Cholewa F; Blume H; Blume C
    Front Bioeng Biotechnol; 2022; 10():896719. PubMed ID: 36061443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projection-Based 3D Printing of Cell Patterning Scaffolds with Multiscale Channels.
    Xue D; Wang Y; Zhang J; Mei D; Wang Y; Chen S
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19428-19435. PubMed ID: 29782142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs.
    Jung JW; Lee JS; Cho DW
    Sci Rep; 2016 Feb; 6():21685. PubMed ID: 26899876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and 3D printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications.
    Hung KC; Tseng CS; Hsu SH
    Adv Healthc Mater; 2014 Oct; 3(10):1578-87. PubMed ID: 24729580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.