BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 33445279)

  • 21. Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography.
    Mačiulaitis J; Deveikytė M; Rekštytė S; Bratchikov M; Darinskas A; Šimbelytė A; Daunoras G; Laurinavičienė A; Laurinavičius A; Gudas R; Malinauskas M; Mačiulaitis R
    Biofabrication; 2015 Mar; 7(1):015015. PubMed ID: 25797444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid manufacturing techniques for the tissue engineering of human heart valves.
    Lueders C; Jastram B; Hetzer R; Schwandt H
    Eur J Cardiothorac Surg; 2014 Oct; 46(4):593-601. PubMed ID: 25063052
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tissue Engineering Applications of Three-Dimensional Bioprinting.
    Zhang X; Zhang Y
    Cell Biochem Biophys; 2015 Jul; 72(3):777-82. PubMed ID: 25663505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D Scaffolds to Study Basic Cell Biology.
    Hippler M; Lemma ED; Bertels S; Blasco E; Barner-Kowollik C; Wegener M; Bastmeyer M
    Adv Mater; 2019 Jun; 31(26):e1808110. PubMed ID: 30793374
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Review: Polymeric-Based 3D Printing for Tissue Engineering.
    Wu GH; Hsu SH
    J Med Biol Eng; 2015; 35(3):285-292. PubMed ID: 26167139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Light-assisted direct-write of 3D functional biomaterials.
    Hribar KC; Soman P; Warner J; Chung P; Chen S
    Lab Chip; 2014 Jan; 14(2):268-75. PubMed ID: 24257507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-Dimensional Printing of Pure Proteinaceous Microstructures by Femtosecond Laser Multiphoton Cross-Linking.
    Serien D; Sugioka K
    ACS Biomater Sci Eng; 2020 Feb; 6(2):1279-1287. PubMed ID: 33464859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip.
    Li P; Yu H; Liu N; Wang F; Lee GB; Wang Y; Liu L; Li WJ
    Biomater Sci; 2018 May; 6(6):1371-1378. PubMed ID: 29790875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D Fabrication of Polymeric Scaffolds for Regenerative Therapy.
    Ratheesh G; Venugopal JR; Chinappan A; Ezhilarasu H; Sadiq A; Ramakrishna S
    ACS Biomater Sci Eng; 2017 Jul; 3(7):1175-1194. PubMed ID: 33440508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering.
    Danilevicius P; Rekstyte S; Balciunas E; Kraniauskas A; Jarasiene R; Sirmenis R; Baltriukiene D; Bukelskiene V; Gadonas R; Malinauskas M
    J Biomed Opt; 2012 Aug; 17(8):081405-1. PubMed ID: 23224166
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of cell proliferation in E-jet 3D-printed scaffolds for tissue engineering applications: the influence of the cell alignment angle.
    Liu T; Huang R; Zhong J; Yang Y; Tan Z; Tan W
    J Mater Chem B; 2017 May; 5(20):3728-3738. PubMed ID: 32264061
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES].
    Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review.
    Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL
    J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Micro-precise spatiotemporal delivery system embedded in 3D printing for complex tissue regeneration.
    Tarafder S; Koch A; Jun Y; Chou C; Awadallah MR; Lee CH
    Biofabrication; 2016 Apr; 8(2):025003. PubMed ID: 27108484
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discover Patent Landscape of Two-photon Polymerization Technology for the Production of 3D Nano-structure Using Claim-based Approach.
    Jui CW; Trappey AJC; Fu CC
    Recent Pat Nanotechnol; 2018; 12(3):218-230. PubMed ID: 30117404
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering.
    Jammalamadaka U; Tappa K
    J Funct Biomater; 2018 Mar; 9(1):. PubMed ID: 29494503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-Photon Lithography of 3D Nanocomposite Piezoelectric Scaffolds for Cell Stimulation.
    Marino A; Barsotti J; de Vito G; Filippeschi C; Mazzolai B; Piazza V; Labardi M; Mattoli V; Ciofani G
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25574-9. PubMed ID: 26548588
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional printing of freeform helical microstructures: a review.
    Farahani RD; Chizari K; Therriault D
    Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.