These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Profiling stem cell states in three-dimensional biomaterial niches using high content image informatics. Dhaliwal A; Brenner M; Wolujewicz P; Zhang Z; Mao Y; Batish M; Kohn J; Moghe PV Acta Biomater; 2016 Nov; 45():98-109. PubMed ID: 27590870 [TBL] [Abstract][Full Text] [Related]
4. Measuring dimensionality of cell-scaffold contacts of primary human bone marrow stromal cells cultured on electrospun fiber scaffolds. Florczyk SJ; Hotaling NA; Simon M; Chalfoun J; Horenberg AL; Schaub NJ; Wang D; Szczypiński PM; DeFelice VL; Bajcsy P; Simon CG J Biomed Mater Res A; 2023 Jan; 111(1):106-117. PubMed ID: 36194510 [TBL] [Abstract][Full Text] [Related]
5. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering. Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034 [TBL] [Abstract][Full Text] [Related]
6. 3D Poly(Lactic Acid) Scaffolds Promote Different Behaviors on Endothelial Progenitors and Adipose-Derived Stromal Cells in Comparison With Standard 2D Cultures. Biagini G; Senegaglia AC; Pereira T; Berti LF; Marcon BH; Stimamiglio MA Front Bioeng Biotechnol; 2021; 9():700862. PubMed ID: 34568295 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis Gu Y; Zhang J; Zhang X; Liang G; Xu T; Niu W Tissue Eng Regen Med; 2019 Aug; 16(4):415-429. PubMed ID: 31413945 [TBL] [Abstract][Full Text] [Related]
8. The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Kumar G; Tison CK; Chatterjee K; Pine PS; McDaniel JH; Salit ML; Young MF; Simon CG Biomaterials; 2011 Dec; 32(35):9188-96. PubMed ID: 21890197 [TBL] [Abstract][Full Text] [Related]
9. Three-Dimensional Biomaterials with Spatiotemporal Control for Regenerative Tissue Engineering. Mendenhall J Acc Chem Res; 2023 Jun; 56(11):1313-1319. PubMed ID: 37103937 [TBL] [Abstract][Full Text] [Related]
10. Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells. Raic A; Rödling L; Kalbacher H; Lee-Thedieck C Biomaterials; 2014 Jan; 35(3):929-40. PubMed ID: 24176196 [TBL] [Abstract][Full Text] [Related]
11. Osteoregenerative Potential of 3D-Printed Poly Lawrence LM; Salary RR; Miller V; Valluri A; Denning KL; Case-Perry S; Abdelgaber K; Smith S; Claudio PP; Day JB Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902373 [TBL] [Abstract][Full Text] [Related]
12. Combinatorial screening of 3D biomaterial properties that promote myofibrogenesis for mesenchymal stromal cell-based heart valve tissue engineering. Usprech J; Romero DA; Amon CH; Simmons CA Acta Biomater; 2017 Aug; 58():34-43. PubMed ID: 28532900 [TBL] [Abstract][Full Text] [Related]
13. A Novel 3D-bioprinted Porous Nano Attapulgite Scaffolds with Good Performance for Bone Regeneration. Wang Z; Hui A; Zhao H; Ye X; Zhang C; Wang A; Zhang C Int J Nanomedicine; 2020; 15():6945-6960. PubMed ID: 33061361 [TBL] [Abstract][Full Text] [Related]
14. Technological Advances of 3D Scaffold-Based Stem Cell/Exosome Therapy in Tissues and Organs. Gu C; Feng J; Waqas A; Deng Y; Zhang Y; Chen W; Long J; Huang S; Chen L Front Cell Dev Biol; 2021; 9():709204. PubMed ID: 34568322 [TBL] [Abstract][Full Text] [Related]
15. [Dopamine modified and cartilage derived morphogenetic protein 1 laden polycaprolactone-hydroxyapatite composite scaffolds fabricated by three-dimensional printing improve chondrogenic differentiation of human bone marrow mesenchymal stem cells]. Xu Y; Wei B; Zhou J; Yao Q; Wang L; Na J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Feb; 32(2):215-222. PubMed ID: 29806415 [TBL] [Abstract][Full Text] [Related]
16. Regenerative Medicine Under the Control of 3D Scaffolds: Current State and Progress of Tissue Scaffolds. Golchin A; Farzaneh S; Porjabbar B; Sadegian F; Estaji M; Ranjbarvan P; Kanafimahbob M; Ranjbari J; Salehi-Nik N; Hosseinzadeh S Curr Stem Cell Res Ther; 2021; 16(2):209-229. PubMed ID: 32691716 [TBL] [Abstract][Full Text] [Related]
17. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173 [TBL] [Abstract][Full Text] [Related]
18. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan. Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039 [TBL] [Abstract][Full Text] [Related]
19. Caveolin-1 mediates soft scaffold-enhanced adipogenesis of human mesenchymal stem cells. Xiang S; Li Z; Fritch MR; Li L; Velankar S; Liu Y; Sohn J; Baker N; Lin H; Tuan RS Stem Cell Res Ther; 2021 Jun; 12(1):347. PubMed ID: 34127047 [TBL] [Abstract][Full Text] [Related]
20. Biodegradable and biocompatible graphene-based scaffolds for functional neural tissue engineering: A strategy approach using dental pulp stem cells and biomaterials. Mansouri N; Al-Sarawi S; Losic D; Mazumdar J; Clark J; Gronthos S; O'Hare Doig R Biotechnol Bioeng; 2021 Nov; 118(11):4217-4230. PubMed ID: 34264518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]