These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 33445289)
21. A microfabricated platform with hydrogel arrays for 3D mechanical stimulation of cells. Liu H; Usprech J; Sun Y; Simmons CA Acta Biomater; 2016 Apr; 34():113-124. PubMed ID: 26646540 [TBL] [Abstract][Full Text] [Related]
22. Applications of X-ray computed tomography for the evaluation of biomaterial-mediated bone regeneration in critical-sized defects. Fernández MP; Witte F; Tozzi G J Microsc; 2020 Mar; 277(3):179-196. PubMed ID: 31701530 [TBL] [Abstract][Full Text] [Related]
23. The 3D imaging of mesenchymal stem cells on porous scaffolds using high-contrasted x-ray computed nanotomography. Vojtová L; Zikmund T; Pavliňáková V; Šalplachta J; Kalasová D; Prosecká E; Brtníková J; Žídek J; Pavliňák D; Kaiser J J Microsc; 2019 Mar; 273(3):169-177. PubMed ID: 30467862 [TBL] [Abstract][Full Text] [Related]
24. Osteogenic and angiogenic potentials of monocultured and co-cultured human-bone-marrow-derived mesenchymal stem cells and human-umbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold. Kang Y; Kim S; Fahrenholtz M; Khademhosseini A; Yang Y Acta Biomater; 2013 Jan; 9(1):4906-15. PubMed ID: 22902820 [TBL] [Abstract][Full Text] [Related]
25. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
26. Preparation of 3D fibrin scaffolds for stem cell culture applications. Kolehmainen K; Willerth SM J Vis Exp; 2012 Mar; (61):e3641. PubMed ID: 22415575 [TBL] [Abstract][Full Text] [Related]
27. Rapid fabrication and screening of tailored functional 3D biomaterials: Validation in bone tissue repair - Part II. Conde-González A; Glinka M; Dutta D; Wallace R; Callanan A; Oreffo ROC; Bradley M Biomater Adv; 2023 Feb; 145():213250. PubMed ID: 36563509 [TBL] [Abstract][Full Text] [Related]
28. Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots. Zheng P; Yao Q; Mao F; Liu N; Xu Y; Wei B; Wang L Mol Med Rep; 2017 Oct; 16(4):5078-5084. PubMed ID: 28849142 [TBL] [Abstract][Full Text] [Related]
29. Fabrication and Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125 [TBL] [Abstract][Full Text] [Related]
30. Matrix dimensionality and stiffness cooperatively regulate osteogenesis of mesenchymal stromal cells. Hsieh WT; Liu YS; Lee YH; Rimando MG; Lin KH; Lee OK Acta Biomater; 2016 Mar; 32():210-222. PubMed ID: 26790775 [TBL] [Abstract][Full Text] [Related]
31. Screening of perfused combinatorial 3D microenvironments for cell culture. Lopes D; Fernandes C; Nóbrega JM; Patrício SG; Oliveira MB; Mano JF Acta Biomater; 2019 Sep; 96():222-236. PubMed ID: 31255663 [TBL] [Abstract][Full Text] [Related]
32. A 3D-Printed Biomaterial Scaffold Reinforced with Inorganic Fillers for Bone Tissue Engineering: In Vitro Assessment and In Vivo Animal Studies. Sithole MN; Kumar P; Du Toit LC; Erlwanger KH; Ubanako PN; Choonara YE Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108772 [TBL] [Abstract][Full Text] [Related]
33. Three-dimensional (3D) printed scaffold and material selection for bone repair. Zhang L; Yang G; Johnson BN; Jia X Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607 [TBL] [Abstract][Full Text] [Related]
34. Synthetic scaffolds for musculoskeletal tissue engineering: cellular responses to fiber parameters. Jenkins TL; Little D NPJ Regen Med; 2019; 4():15. PubMed ID: 31263573 [TBL] [Abstract][Full Text] [Related]
35. Current approaches in biomaterial-based hematopoietic stem cell niches. Bello AB; Park H; Lee SH Acta Biomater; 2018 May; 72():1-15. PubMed ID: 29578087 [TBL] [Abstract][Full Text] [Related]
36. Influence of the three-dimensional culture of human bone marrow mesenchymal stromal cells within a macroporous polysaccharides scaffold on Pannexin 1 and Pannexin 3. Guerrero J; Oliveira H; Aid R; Bareille R; Siadous R; Letourneur D; Mao Y; Kohn J; Amédée J J Tissue Eng Regen Med; 2018 Apr; 12(4):e1936-e1949. PubMed ID: 29222846 [TBL] [Abstract][Full Text] [Related]
37. Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic-inorganic composite scaffolds for bone repair. Chatzinikolaidou M; Rekstyte S; Danilevicius P; Pontikoglou C; Papadaki H; Farsari M; Vamvakaki M Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():301-9. PubMed ID: 25579927 [TBL] [Abstract][Full Text] [Related]
38. 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or electrospun micro-fiber scaffolds. Brennan MÁ; Renaud A; Gamblin AL; D'Arros C; Nedellec S; Trichet V; Layrolle P Biomed Mater; 2015 Aug; 10(4):045019. PubMed ID: 26238732 [TBL] [Abstract][Full Text] [Related]
39. Stem Cell-Friendly Scaffold Biomaterials: Applications for Bone Tissue Engineering and Regenerative Medicine. Zhang Y; Wu D; Zhao X; Pakvasa M; Tucker AB; Luo H; Qin KH; Hu DA; Wang EJ; Li AJ; Zhang M; Mao Y; Sabharwal M; He F; Niu C; Wang H; Huang L; Shi D; Liu Q; Ni N; Fu K; Chen C; Wagstaff W; Reid RR; Athiviraham A; Ho S; Lee MJ; Hynes K; Strelzow J; He TC; El Dafrawy M Front Bioeng Biotechnol; 2020; 8():598607. PubMed ID: 33381499 [TBL] [Abstract][Full Text] [Related]
40. Bone tissue engineering scaffolds with HUVECs/hBMSCs cocultured on 3D-printed composite bioactive ceramic scaffolds promoted osteogenesis/angiogenesis. Liu X; Zhao N; Liang H; Tan B; Huang F; Hu H; Chen Y; Wang G; Ling Z; Liu C; Miao Y; Wang Y; Zou X J Orthop Translat; 2022 Nov; 37():152-162. PubMed ID: 36380884 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]