These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 33445289)
41. Evaluation of egg white ovomucin-based porous scaffold as an implantable biomaterial for tissue engineering. Carpena NT; Abueva CDG; Padalhin AR; Lee BT J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):2107-2117. PubMed ID: 27405539 [TBL] [Abstract][Full Text] [Related]
42. Influence of 3D printed porous architecture on mesenchymal stem cell enrichment and differentiation. Ferlin KM; Prendergast ME; Miller ML; Kaplan DS; Fisher JP Acta Biomater; 2016 Mar; 32():161-169. PubMed ID: 26773464 [TBL] [Abstract][Full Text] [Related]
43. The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds. Zhang H; Lin CY; Hollister SJ Biomaterials; 2009 Sep; 30(25):4063-9. PubMed ID: 19487019 [TBL] [Abstract][Full Text] [Related]
44. Toward modeling the bone marrow niche using scaffold-based 3D culture systems. Di Maggio N; Piccinini E; Jaworski M; Trumpp A; Wendt DJ; Martin I Biomaterials; 2011 Jan; 32(2):321-9. PubMed ID: 20952054 [TBL] [Abstract][Full Text] [Related]
45. Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality. Raftery RM; Woods B; Marques ALP; Moreira-Silva J; Silva TH; Cryan SA; Reis RL; O'Brien FJ Acta Biomater; 2016 Oct; 43():160-169. PubMed ID: 27402181 [TBL] [Abstract][Full Text] [Related]
46. Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells. Roskies M; Jordan JO; Fang D; Abdallah MN; Hier MP; Mlynarek A; Tamimi F; Tran SD J Biomater Appl; 2016 Jul; 31(1):132-9. PubMed ID: 26980549 [TBL] [Abstract][Full Text] [Related]
47. 3D printed polycaprolactone/β-tricalcium phosphate/carbon nanotube composite - Physical properties and biocompatibility. Wang Y; Liu C; Song T; Cao Z; Wang T Heliyon; 2024 Mar; 10(5):e26071. PubMed ID: 38468962 [TBL] [Abstract][Full Text] [Related]
48. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Mauney JR; Nguyen T; Gillen K; Kirker-Head C; Gimble JM; Kaplan DL Biomaterials; 2007 Dec; 28(35):5280-90. PubMed ID: 17765303 [TBL] [Abstract][Full Text] [Related]
49. Design and 3D Printing of Personalized Hybrid and Gradient Structures for Critical Size Bone Defects. Altunbek M; Afghah SF; Fallah A; Acar AA; Koc B ACS Appl Bio Mater; 2023 May; 6(5):1873-1885. PubMed ID: 37071829 [TBL] [Abstract][Full Text] [Related]
50. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752 [TBL] [Abstract][Full Text] [Related]
51. Biomaterials and Scaffold Design Strategies for Regenerative Endodontic Therapy. Raddall G; Mello I; Leung BM Front Bioeng Biotechnol; 2019; 7():317. PubMed ID: 31803727 [TBL] [Abstract][Full Text] [Related]
52. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies. Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382 [TBL] [Abstract][Full Text] [Related]
53. The role of biomaterials and scaffolds in immune responses in regenerative medicine: macrophage phenotype modulation by biomaterial properties and scaffold architectures. Antmen E; Vrana NE; Hasirci V Biomater Sci; 2021 Dec; 9(24):8090-8110. PubMed ID: 34762077 [TBL] [Abstract][Full Text] [Related]
54. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
55. Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactive polymer scaffolds. Bhuiyan DB; Middleton JC; Tannenbaum R; Wick TM Biomed Mater Eng; 2017; 28(6):671-685. PubMed ID: 29171970 [TBL] [Abstract][Full Text] [Related]
56. 3D Bioprinting of a Bioactive Composite Scaffold for Cell Delivery in Periodontal Tissue Regeneration. Miao G; Liang L; Li W; Ma C; Pan Y; Zhao H; Zhang Q; Xiao Y; Yang X Biomolecules; 2023 Jun; 13(7):. PubMed ID: 37509098 [TBL] [Abstract][Full Text] [Related]
57. Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering. Arulmoli J; Wright HJ; Phan DTT; Sheth U; Que RA; Botten GA; Keating M; Botvinick EL; Pathak MM; Zarembinski TI; Yanni DS; Razorenova OV; Hughes CCW; Flanagan LA Acta Biomater; 2016 Oct; 43():122-138. PubMed ID: 27475528 [TBL] [Abstract][Full Text] [Related]
58. Sumecton reinforced gelatin-based scaffolds for cell-free bone regeneration. Lukin I; Erezuma I; Garcia-Garcia P; Reyes R; Evora C; Kadumudi FB; Dolatshahi-Pirouz A; Orive G Int J Biol Macromol; 2023 Sep; 249():126023. PubMed ID: 37506785 [TBL] [Abstract][Full Text] [Related]
59. Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology. Zhang J; Wehrle E; Vetsch JR; Paul GR; Rubert M; Müller R Biomed Mater; 2019 Sep; 14(6):065009. PubMed ID: 31426033 [TBL] [Abstract][Full Text] [Related]
60. Bone tissue engineering strategy based on the synergistic effects of silicon and strontium ions. Xing M; Wang X; Wang E; Gao L; Chang J Acta Biomater; 2018 May; 72():381-395. PubMed ID: 29627679 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]