These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33445315)

  • 1. Nanohydroxyapatite/Graphene Nanoribbons Nanocomposites Induce in Vitro Osteogenesis and Promote in Vivo Bone Neoformation.
    S Medeiros J; Oliveira AM; Carvalho JO; Ricci R; Martins MDCC; Rodrigues BVM; Webster TJ; Viana BC; Vasconcellos LMR; Canevari RA; Marciano FR; Lobo AO
    ACS Biomater Sci Eng; 2018 May; 4(5):1580-1590. PubMed ID: 33445315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro osteogenesis process induced by hybrid nanohydroxyapatite/graphene nanoribbons composites.
    de Vasconcellos LMR; do Prado RF; Sartori EM; Mendonça DBS; Mendonça G; Marciano FR; Lobo AO
    J Mater Sci Mater Med; 2019 Jun; 30(7):81. PubMed ID: 31254104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun Poly(butylene-adipate-co-terephthalate)/Nano-hyDroxyapatite/Graphene Nanoribbon Scaffolds Improved the In Vivo Osteogenesis of the Neoformed Bone.
    Vasconcellos LMR; Santana-Melo GF; Silva E; Pereira VF; Araújo JCR; Silva ADR; Furtado ASA; Elias CMV; Viana BC; Marciano FR; Lobo AO
    J Funct Biomater; 2021 Feb; 12(1):. PubMed ID: 33562592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High loads of nano-hydroxyapatite/graphene nanoribbon composites guided bone regeneration using an osteoporotic animal model.
    Oliveira FC; Carvalho JO; Gusmão SBS; Gonçalves LS; Soares Mendes LM; Freitas SAP; Gusmão GOM; Viana BC; Marciano FR; Lobo AO
    Int J Nanomedicine; 2019; 14():865-874. PubMed ID: 30774339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun ultrathin PBAT/nHAp fibers influenced the in vitro and in vivo osteogenesis and improved the mechanical properties of neoformed bone.
    Santana-Melo GF; Rodrigues BVM; da Silva E; Ricci R; Marciano FR; Webster TJ; Vasconcellos LMR; Lobo AO
    Colloids Surf B Biointerfaces; 2017 Jul; 155():544-552. PubMed ID: 28494433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of Graphene-Hydroxyapatite Nanocomposites for Potential Use in Bone Tissue Engineering.
    Ghosh S; Bhagwat T; Kitture R; Thongmee S; Webster TJ
    J Vis Exp; 2022 Jul; (185):. PubMed ID: 35969088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo.
    Dhivya S; Saravanan S; Sastry TP; Selvamurugan N
    J Nanobiotechnology; 2015 Jun; 13():40. PubMed ID: 26065678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomineralization inspired engineering of nanobiomaterials promoting bone repair.
    Oliveira FC; Carvalho JO; Magalhães LSSM; da Silva JM; Pereira SR; Gomes Júnior AL; Soares LM; Cariman LIC; da Silva RI; Viana BC; Silva-Filho EC; Afewerki S; da Cunha HN; Vega ML; Marciano FR; Lobo AO
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111776. PubMed ID: 33545906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds.
    Lai GJ; Shalumon KT; Chen JP
    Int J Nanomedicine; 2015; 10():567-84. PubMed ID: 25609962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pilot study: Nano-hydroxyapatite-PEG/PLA containing low dose rhBMP2 stimulates proliferation and osteogenic differentiation of human bone marrow derived mesenchymal stem cells.
    Dede EÇ; Gizer M; Korkusuz F; Bal Z; Ishiguro H; Yoshikawa H; Kaito T; Korkusuz P
    JOR Spine; 2023 Sep; 6(3):e1258. PubMed ID: 37780828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene oxide nanoribbons as nanomaterial for bone regeneration: Effects on cytotoxicity, gene expression and bactericidal effect.
    Ricci R; Leite NCS; da-Silva NS; Pacheco-Soares C; Canevari RA; Marciano FR; Webster TJ; Lobo AO
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():341-348. PubMed ID: 28575993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo evaluation of rotary-jet-spun poly(ɛ-caprolactone) with high loading of nano-hydroxyapatite.
    Andrade TM; Mello DCR; Elias CMV; Abdala JMA; Silva E; Vasconcellos LMR; Tim CR; Marciano FR; Lobo AO
    J Mater Sci Mater Med; 2019 Jan; 30(2):19. PubMed ID: 30689050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells.
    Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of synergistic effects of inductive and conductive factors in gelatin-based cryogels for bone tissue engineering.
    Liao HT; Shalumon KT; Chang KH; Sheu C; Chen JP
    J Mater Chem B; 2016 Mar; 4(10):1827-1841. PubMed ID: 32263060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotary Jet-Spun Polycaprolactone/Hydroxyapatite and Carbon Nanotube Scaffolds Seeded with Bone Marrow Mesenchymal Stem Cells Increase Bone Neoformation.
    Machado-Paula MM; Corat MAF; de Vasconcellos LMR; Araújo JCR; Mi G; Ghannadian P; Toniato TV; Marciano FR; Webster TJ; Lobo AO
    ACS Appl Bio Mater; 2022 Mar; 5(3):1013-1024. PubMed ID: 35171572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of quercetin and nanohydroxyapatite modifications of decellularized goat-lung scaffold for bone regeneration.
    Gupta SK; Kumar R; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():919-928. PubMed ID: 27987789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility Studies of Nanoengineered Polycaprolactone and Nanohydroxyapatite Scaffold for Craniomaxillofacial Bone Regeneration.
    Harikrishnan P; Islam H; Sivasamy A
    J Craniofac Surg; 2019 Jan; 30(1):265-269. PubMed ID: 30339597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vitro and in Vivo Studies of Novel Poly(D,L-lactic acid), Superhydrophilic Carbon Nanotubes, and Nanohydroxyapatite Scaffolds for Bone Regeneration.
    Siqueira IA; Corat MA; Cavalcanti Bd; Ribeiro Neto WA; Martin AA; Bretas RE; Marciano FR; Lobo AO
    ACS Appl Mater Interfaces; 2015 May; 7(18):9385-98. PubMed ID: 25899398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactive polymer scaffolds.
    Bhuiyan DB; Middleton JC; Tannenbaum R; Wick TM
    Biomed Mater Eng; 2017; 28(6):671-685. PubMed ID: 29171970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradable Nanohydroxyapatite-Reinforced Superglue for Rapid Bone Fixation and Promoted Osteogenesis.
    Yang R; Chen B; Zhang X; Bao Z; Yan Q; Luan S
    ACS Nano; 2024 Mar; 18(11):8517-8530. PubMed ID: 38442407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.