These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33445318)

  • 1. Enhanced Mechanical and Biological Performance of an Extremely Fine Nanograined 316L Stainless Steel Cell-Substrate Interface Fabricated by Ultrasonic Shot Peening.
    Yin F; Xu R; Hu S; Zhao K; Yang S; Kuang S; Li Q; Han Q
    ACS Biomater Sci Eng; 2018 May; 4(5):1609-1621. PubMed ID: 33445318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel.
    Bagherifard S; Hickey DJ; de Luca AC; Malheiro VN; Markaki AE; Guagliano M; Webster TJ
    Biomaterials; 2015 Dec; 73():185-97. PubMed ID: 26410786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An assessment of ultra fine grained 316L stainless steel for implant applications.
    Muley SV; Vidvans AN; Chaudhari GP; Udainiya S
    Acta Biomater; 2016 Jan; 30():408-419. PubMed ID: 26518104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the impact of grain structure in austenitic stainless steel from a nanograined regime to a coarse-grained regime on osteoblast functions using a novel metal deformation-annealing sequence.
    Misra RD; Nune C; Pesacreta TC; Somani MC; Karjalainen LP
    Acta Biomater; 2013 Apr; 9(4):6245-58. PubMed ID: 23232208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-manganese and nitrogen stabilized austenitic stainless steel (Fe-18Cr-22Mn-0.65N): a material with a bright future for orthopedic implant devices.
    Kumar CS; Singh G; Poddar S; Varshney N; Mahto SK; Podder AS; Chattopadhyay K; Rastogi A; Singh V; Mahobia GS
    Biomed Mater; 2021 Sep; 16(6):. PubMed ID: 34517359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite.
    Ataollahi Oshkour A; Pramanik S; Mehrali M; Yau YH; Tarlochan F; Abu Osman NA
    J Mech Behav Biomed Mater; 2015 Sep; 49():321-31. PubMed ID: 26072197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased osteoblast function in vitro and in vivo through surface nanostructuring by ultrasonic shot peening.
    Guo Y; Hu B; Tang C; Wu Y; Sun P; Zhang X; Jia Y
    Int J Nanomedicine; 2015; 10():4593-603. PubMed ID: 26229463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anodized Nanostructured 316L Stainless Steel Enhances Osteoblast Functions and Exhibits Anti-Fouling Properties.
    Erdogan YK; Ercan B
    ACS Biomater Sci Eng; 2023 Feb; 9(2):693-704. PubMed ID: 36692948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additively Manufactured 316L Stainless Steel Subjected to a Duplex Peening-PVD Coating Treatment.
    Bonnici L; Buhagiar J; Cassar G; Vella KA; Chen J; Zhang X; Huang Z; Zammit A
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced osteoblast proliferation and corrosion resistance of commercially pure titanium through surface nanostructuring by ultrasonic shot peening and stress relieving.
    Jindal S; Bansal R; Singh BP; Pandey R; Narayanan S; Wani MR; Singh V
    J Oral Implantol; 2014 Jul; 40 Spec No():347-55. PubMed ID: 25020216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanism for the enhanced attachment and proliferation of fibroblasts on anodized 316L stainless steel with nano-pit arrays.
    Ni S; Sun L; Ercan B; Liu L; Ziemer K; Webster TJ
    J Biomed Mater Res B Appl Biomater; 2014 Aug; 102(6):1297-303. PubMed ID: 24610894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on Mechanism of Structure Angle on Microstructure and Properties of SLM-Fabricated 316L Stainless Steel.
    Li X; Yi D; Wu X; Zhang J; Yang X; Zhao Z; Wang J; Liu B; Bai P
    Front Bioeng Biotechnol; 2021; 9():778332. PubMed ID: 34805125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ultrasonic surface impact on the microstructural characterization and mechanical properties of 316L austenitic stainless steel.
    Zhu J; Zhuang ML; Qi Y; Chen B; Cao X
    PLoS One; 2024; 19(7):e0307400. PubMed ID: 39052615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of PTFE Film on 316L Stainless Steel Deposited through Spin Coating and Its Anticorrosion Performance in Multi Acidic Mediums.
    Akram W; Farhan Rafique A; Maqsood N; Khan A; Badshah S; Khan RU
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31947700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser surface modification of 316L stainless steel.
    Balla VK; Dey S; Muthuchamy AA; Janaki Ram GD; Das M; Bandyopadhyay A
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):569-577. PubMed ID: 28245086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of conventional and severe shot peening effects on the microstructure, texture, roughness, hardness, and electrochemical behavior of austenitic stainless steel.
    Yazdani F; Rabiee SM; Jamaati R
    Heliyon; 2024 May; 10(10):e31284. PubMed ID: 38803990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the effect of three surface treatments on the biocompatibility of 316L stainless steel using human differentiated cells.
    Bordji K; Jouzeau JY; Mainard D; Payan E; Delagoutte JP; Netter P
    Biomaterials; 1996 Mar; 17(5):491-500. PubMed ID: 8991480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel.
    Kim KT; Lee JH; Kim YS
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Surface Modification of 347 Stainless Steel upon Shot Peening.
    Li K; Zheng Q; Li C; Shao B; Guo D; Chen D; Sun J; Dong J; Cao P; Shin K
    Scanning; 2017; 2017():2189614. PubMed ID: 29379582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical, antibacterial, and biocompatibility mechanism of PVD grown silver-tantalum-oxide-based nanostructured thin film on stainless steel 316L for surgical applications.
    Alias R; Mahmoodian R; Genasan K; Vellasamy KM; Hamdi Abd Shukor M; Kamarul T
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110304. PubMed ID: 31761210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.