These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33445444)

  • 1. Double-Deck Metal Solenoids 3D Integrated in Silicon Wafer for Kinetic Energy Harvester.
    Wang N; Han R; Chen C; Gu J; Li X
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33445444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MEMS-Casting Fabricated Chip-Style 3D Metal Solenoidal Transformers towards Integrated Power Supply.
    Wang N; Chen C; Chen P; Gu J; Pan P; Han R; Liu M; Li X
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric Power Self-Supply Module for WSN Sensor Node Based on MEMS Vibration Energy Harvester.
    Zhang W; Dong Y; Tan Y; Zhang M; Qian X; Wang X
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibration Energy Harvester Based on Torsionally Oscillating Magnet.
    Wang X; Li J; Zhou C; Tao K; Qiao D; Li Y
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromagnetic Linear Vibration Energy Harvester Using Sliding Permanent Magnet Array and Ferrofluid as a Lubricant.
    Chae SH; Ju S; Choi Y; Chi YE; Ji CH
    Micromachines (Basel); 2017 Sep; 8(10):. PubMed ID: 30400478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Pendulum-like Low Frequency Electromagnetic Vibration Energy Harvester Based on Polymer Spring and Coils.
    Li Y; Wang X; Zhang S; Zhou C; Qiao D; Tao K
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power Density Improvement of Piezoelectric Energy Harvesters via a Novel Hybridization Scheme with Electromagnetic Transduction.
    Li Z; Xin C; Peng Y; Wang M; Luo J; Xie S; Pu H
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Non-Resonant Kinetic Energy Harvester for Bioimplantable Applications.
    Beyaz MI; Baelhadj HC; Habibiabad S; Adhikari SS; Davoodi H; Badilita V
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rigid-Flex PCB Technology with Embedded Fluidic Cavities and Its Application in Electromagnetic Energy Harvesters.
    Chiu Y; Hong HC
    Micromachines (Basel); 2018 Jun; 9(6):. PubMed ID: 30424241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer Magnetic Composite Core Based Microcoils and Microtransformers for Very High Frequency Power Applications.
    Mariappan SG; Moazenzadeh A; Wallrabe U
    Micromachines (Basel); 2016 Apr; 7(4):. PubMed ID: 30407433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit.
    Yu H; Zhou J; Deng L; Wen Z
    Sensors (Basel); 2014 Feb; 14(2):3323-41. PubMed ID: 24556670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of enhanced piezoelectric energy harvester induced by human motion.
    Minami Y; Nakamachi E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1627-30. PubMed ID: 23366218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Polymer-based Piezoelectric Vibration Energy Harvester with a 3D Meshed-Core Structure.
    Tsukamoto T; Umino Y; Hashikura K; Shiomi S; Yamada K; Suzuki T
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30855575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Cantilever-Type Electrostatic Energy Harvester and Its Charging Characteristics on a Highway Viaduct.
    Koga H; Mitsuya H; Honma H; Fujita H; Toshiyoshi H; Hashiguchi G
    Micromachines (Basel); 2017 Sep; 8(10):. PubMed ID: 30400483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-frequency meandering piezoelectric vibration energy harvester.
    Berdy DF; Srisungsitthisunti P; Jung B; Xu X; Rhoads JF; Peroulis D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):846-58. PubMed ID: 22622969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Note: A cubic electromagnetic harvester that convert vibration energy from all directions.
    Han M; Qiu G; Liu W; Meng B; Zhang XS; Zhang H
    Rev Sci Instrum; 2014 Jul; 85(7):076109. PubMed ID: 25085194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bulk micromachined lead zinconate titanate cantilever energy harvester with inter-digital IrO(x) electrodes.
    Park J; Park JY
    J Nanosci Nanotechnol; 2013 Oct; 13(10):7191-3. PubMed ID: 24245226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repulsively driven frequency-increased-generators for durable energy harvesting from ultra-low frequency vibration.
    Tang Q; Yang Y; Li X
    Rev Sci Instrum; 2014 Apr; 85(4):045004. PubMed ID: 24784650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimodal MEMS vibration energy harvester with cascaded flexible and silicon beams for ultralow frequency response.
    Feng H; Bu L; Li Z; Xu S; Hu B; Xu M; Jiang S; Wang X
    Microsyst Nanoeng; 2023; 9():33. PubMed ID: 36969966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.