These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33445458)

  • 21. Identification of offal adulteration in beef by laser induced breakdown spectroscopy (LIBS).
    Velioglu HM; Sezer B; Bilge G; Baytur SE; Boyaci IH
    Meat Sci; 2018 Apr; 138():28-33. PubMed ID: 29289716
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of invasive weed optimization and least square support vector machine for prediction of beef adulteration with spoiled beef based on visible near-infrared (Vis-NIR) hyperspectral imaging.
    Zhao HT; Feng YZ; Chen W; Jia GF
    Meat Sci; 2019 May; 151():75-81. PubMed ID: 30716565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Survey of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and non-ortho-polychlorinated biphenyls in US meat and poultry, 2012-13: toxic equivalency levels, patterns, temporal trends and implications.
    Lupton SJ; O'Keefe M; Muñiz-Ortiz JG; Clinch N; Basu P
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Nov; 34(11):1970-1981. PubMed ID: 28632453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and quantification of flavor attributes present in chicken, lamb, pork, beef, and turkey.
    Maughan C; Martini S
    J Food Sci; 2012 Feb; 77(2):S115-21. PubMed ID: 22339550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantification of copper content with laser induced breakdown spectroscopy as a potential indicator of offal adulteration in beef.
    Casado-Gavalda MP; Dixit Y; Geulen D; Cama-Moncunill R; Cama-Moncunill X; Markiewicz-Keszycka M; Cullen PJ; Sullivan C
    Talanta; 2017 Jul; 169():123-129. PubMed ID: 28411800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Authentication of Tokaj Wine (Hungaricum) with the Electronic Tongue and Near Infrared Spectroscopy.
    Zaukuu JZ; Soós J; Bodor Z; Felföldi J; Magyar I; Kovacs Z
    J Food Sci; 2019 Dec; 84(12):3437-3444. PubMed ID: 31762045
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid identification of closely related muscle foods by vibrational spectroscopy and machine learning.
    Ellis DI; Broadhurst D; Clarke SJ; Goodacre R
    Analyst; 2005 Dec; 130(12):1648-54. PubMed ID: 16284664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Artificial bionic taste sensors coupled with chemometrics for rapid detection of beef adulteration.
    Lu B; Han F; Aheto JH; Rashed MMA; Pan Z
    Food Sci Nutr; 2021 Sep; 9(9):5220-5228. PubMed ID: 34532030
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emerging trends of advanced sensor based instruments for meat, poultry and fish quality- a review.
    Zaukuu JLZ; Bazar G; Gillay Z; Kovacs Z
    Crit Rev Food Sci Nutr; 2020; 60(20):3443-3460. PubMed ID: 31793331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative peptidomic profile and bioactivities of cooked beef, pork, chicken and turkey meat after in vitro gastro-intestinal digestion.
    Martini S; Conte A; Tagliazucchi D
    J Proteomics; 2019 Sep; 208():103500. PubMed ID: 31454557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Untargeted metabolomics using liquid chromatography-high resolution mass spectrometry and chemometrics for analysis of non-halal meats adulteration in beef meat.
    Windarsih A; Bakar NKA; Rohman A; Yuliana ND; Dachriyanus D
    Anim Biosci; 2024 May; 37(5):918-928. PubMed ID: 38228131
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lead and cadmium in meat and meat products consumed by the population in Tenerife Island, Spain.
    González-Weller D; Karlsson L; Caballero A; Hernández F; Gutiérrez A; González-Iglesias T; Marino M; Hardisson A
    Food Addit Contam; 2006 Aug; 23(8):757-63. PubMed ID: 16807203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting aged pork quality using a portable Raman device.
    Santos CC; Zhao J; Dong X; Lonergan SM; Huff-Lonergan E; Outhouse A; Carlson KB; Prusa KJ; Fedler CA; Yu C; Shackelford SD; King DA; Wheeler TL
    Meat Sci; 2018 Nov; 145():79-85. PubMed ID: 29908446
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef.
    Meza-Márquez OG; Gallardo-Velázquez T; Osorio-Revilla G
    Meat Sci; 2010 Oct; 86(2):511-9. PubMed ID: 20598447
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A rapid UHPLC-MS/MS screening method for the detection of the addition of porcine blood plasma to emulsion-type pork sausages.
    Stader C; Judas M; Jira W
    Anal Bioanal Chem; 2019 Oct; 411(25):6697-6709. PubMed ID: 31401670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discrimination of chicken seasonings and beef seasonings using electronic nose and sensory evaluation.
    Tian H; Li F; Qin L; Yu H; Ma X
    J Food Sci; 2014 Nov; 79(11):S2346-53. PubMed ID: 25311825
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robust linear and non-linear models of NIR spectroscopy for detection and quantification of adulterants in fresh and frozen-thawed minced beef.
    Morsy N; Sun DW
    Meat Sci; 2013 Feb; 93(2):292-302. PubMed ID: 23040181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Myoglobin as marker in meat adulteration: a UPLC method for determining the presence of pork meat in raw beef burger.
    Giaretta N; Di Giuseppe AM; Lippert M; Parente A; Di Maro A
    Food Chem; 2013 Dec; 141(3):1814-20. PubMed ID: 23870895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Qualitative and Quantitative Detection of Food Adulteration Using a Smart E-Nose.
    Pulluri KK; Kumar VN
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dioxin and PCB residues in meats from Italy: Consumer dietary exposure.
    Barone G; Storelli A; Quaglia NC; Dambrosio A; Garofalo R; Chiumarulo R; Storelli MM
    Food Chem Toxicol; 2019 Nov; 133():110717. PubMed ID: 31356912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.