These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33445476)

  • 1. How Insertion of a Single Tryptophan in the N-Terminus of a Cecropin A-Melittin Hybrid Peptide Changes Its Antimicrobial and Biophysical Profile.
    Ferreira AR; Teixeira C; Sousa CF; Bessa LJ; Gomes P; Gameiro P
    Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33445476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Unusual Aggregation and Fusion Activity of the Antimicrobial Peptide W-BP100 in Anionic Vesicles.
    Ferreira AR; Ferreira M; Nunes C; Reis S; Teixeira C; Gomes P; Gameiro P
    Membranes (Basel); 2023 Jan; 13(2):. PubMed ID: 36837642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide:lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies.
    Manzini MC; Perez KR; Riske KA; Bozelli JC; Santos TL; da Silva MA; Saraiva GK; Politi MJ; Valente AP; Almeida FC; Chaimovich H; Rodrigues MA; Bemquerer MP; Schreier S; Cuccovia IM
    Biochim Biophys Acta; 2014 Jul; 1838(7):1985-99. PubMed ID: 24743023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic effects of the membrane actions of cecropin-melittin antimicrobial hybrid peptide BP100.
    Ferre R; Melo MN; Correia AD; Feliu L; Bardají E; Planas M; Castanho M
    Biophys J; 2009 Mar; 96(5):1815-27. PubMed ID: 19254540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, biophysical and functional studies of two BP100 analogues modified by a hydrophobic chain and a cyclic peptide.
    Carretero GPB; Saraiva GKV; Cauz ACG; Rodrigues MA; Kiyota S; Riske KA; Dos Santos AA; Pinatto-Botelho MF; Bemquerer MP; Gueiros-Filho FJ; Chaimovich H; Schreier S; Cuccovia IM
    Biochim Biophys Acta Biomembr; 2018 Aug; 1860(8):1502-1516. PubMed ID: 29750913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria.
    Torcato IM; Huang YH; Franquelim HG; Gaspar D; Craik DJ; Castanho MA; Troeira Henriques S
    Biochim Biophys Acta; 2013 Mar; 1828(3):944-55. PubMed ID: 23246973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1-8)-magainin 2(1-12) and its analogues, on their antibiotic activities and structures.
    Oh D; Shin SY; Lee S; Kang JH; Kim SD; Ryu PD; Hahm KS; Kim Y
    Biochemistry; 2000 Oct; 39(39):11855-64. PubMed ID: 11009597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding and Flip as Initial Steps for BP-100 Antimicrobial Actions.
    Park P; Franco LR; Chaimovich H; Coutinho K; Cuccovia IM; Lima FS
    Sci Rep; 2019 Jun; 9(1):8622. PubMed ID: 31197199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction and lipid-induced conformation of two cecropin-melittin hybrid peptides depend on peptide and membrane composition.
    Abrunhosa F; Faria S; Gomes P; Tomaz I; Pessoa JC; Andreu D; Bastos M
    J Phys Chem B; 2005 Sep; 109(36):17311-9. PubMed ID: 16853210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers.
    De Kroon AI; Soekarjo MW; De Gier J; De Kruijff B
    Biochemistry; 1990 Sep; 29(36):8229-40. PubMed ID: 2252886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial Peptide K
    Enoki TA; Moreira-Silva I; Lorenzon EN; Cilli EM; Perez KR; Riske KA; Lamy MT
    Langmuir; 2018 Feb; 34(5):2014-2025. PubMed ID: 29284086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arginine-Containing Surfactant-Like Peptides: Interaction with Lipid Membranes and Antimicrobial Activity.
    Castelletto V; Barnes RH; Karatzas KA; Edwards-Gayle CJC; Greco F; Hamley IW; Rambo R; Seitsonen J; Ruokolainen J
    Biomacromolecules; 2018 Jul; 19(7):2782-2794. PubMed ID: 29738229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids.
    Ladokhin AS; Selsted ME; White SH
    Biophys J; 1997 Feb; 72(2 Pt 1):794-805. PubMed ID: 9017204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alanine scan and (2)H NMR analysis of the membrane-active peptide BP100 point to a distinct carpet mechanism of action.
    Zamora-Carreras H; Strandberg E; Mühlhäuser P; Bürck J; Wadhwani P; Jiménez MÁ; Bruix M; Ulrich AS
    Biochim Biophys Acta; 2016 Jun; 1858(6):1328-38. PubMed ID: 26975251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleation and growth of pores in 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) / cholesterol bilayer by antimicrobial peptides melittin, its mutants and cecropin P1.
    Lyu Y; Fitriyanti M; Narsimhan G
    Colloids Surf B Biointerfaces; 2019 Jan; 173():121-127. PubMed ID: 30278360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical structure of the short multifunctional peptide BP100 in membranes.
    Wadhwani P; Strandberg E; van den Berg J; Mink C; Bürck J; Ciriello RA; Ulrich AS
    Biochim Biophys Acta; 2014 Mar; 1838(3):940-9. PubMed ID: 24216062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylethanolamine Bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biophys J; 2004 Oct; 87(4):2470-82. PubMed ID: 15454444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of N-terminal acetylation on lytic activity and lipid-packing perturbation induced in model membranes by a mastoparan-like peptide.
    Alvares DS; Wilke N; Ruggiero Neto J
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):737-748. PubMed ID: 29287697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insertion and orientation of a synthetic peptide representing the C-terminus of the A1 domain of Shiga toxin into phospholipid membranes.
    Saleh MT; Ferguson J; Boggs JM; Gariépy J
    Biochemistry; 1996 Jul; 35(29):9325-34. PubMed ID: 8755710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.