BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 33445690)

  • 1. Recent Advances in Photodynamic Therapy for Deep-Seated Tumors with the Aid of Nanomedicine.
    Li WP; Yen CJ; Wu BS; Wong TW
    Biomedicines; 2021 Jan; 9(1):. PubMed ID: 33445690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotherapeutic Intervention in Photodynamic Therapy for Cancer.
    Itoo AM; Paul M; Padaga SG; Ghosh B; Biswas S
    ACS Omega; 2022 Dec; 7(50):45882-45909. PubMed ID: 36570217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Annealing-modulated nanoscintillators for nonconventional X-ray activation of comprehensive photodynamic effects in deep cancer theranostics.
    Chuang YC; Chu CH; Cheng SH; Liao LD; Chu TS; Chen NT; Paldino A; Hsia Y; Chen CT; Lo LW
    Theranostics; 2020; 10(15):6758-6773. PubMed ID: 32550902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of nanomaterials in advancing photodynamic therapy (PDT) for deep-seated tumors and synergy with radiotherapy.
    Dinakaran D; Wilson BC
    Front Bioeng Biotechnol; 2023; 11():1250804. PubMed ID: 37849983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of Nanoparticle-Mediated Photodynamic Therapy: From Superficial to Deep-Seated Cancers.
    Sivasubramanian M; Chuang YC; Lo LW
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30709030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced techniques for performing photodynamic therapy in deep-seated tissues.
    Sun B; Bte Rahmat JN; Zhang Y
    Biomaterials; 2022 Dec; 291():121875. PubMed ID: 36335717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-high FRET efficiency NaGdF
    Zhang W; Zhang X; Shen Y; Shi F; Song C; Liu T; Gao P; Lan B; Liu M; Wang S; Fan L; Lu H
    Biomaterials; 2018 Nov; 184():31-40. PubMed ID: 30195803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted co-delivery of a photosensitizer and an antisense oligonucleotide based on an activatable hyaluronic acid nanosystem with endogenous oxygen generation for enhanced photodynamic therapy of hypoxic tumors.
    Wu Y; Ding L; Zheng C; Li H; Wu M; Sun Y; Liu X; Zhang X; Zeng Y
    Acta Biomater; 2022 Nov; 153():419-430. PubMed ID: 36115655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid metal-organic framework nanomedicine-mediated photodynamic therapy and hypoxia-activated cancer chemotherapy.
    Jia Z; Gao Y; Ni J; Wu X; Mao Z; Sheng G; Zhu Y
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):379-390. PubMed ID: 36162395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregation-induced emission photosensitizer/bacteria biohybrids enhance Cerenkov radiation-induced photodynamic therapy by activating anti-tumor immunity for synergistic tumor treatment.
    Zhu Z; Liu Q; Zhu K; Wang K; Lin L; Chen Y; Shao F; Qian R; Song Y; Gao Y; Yang B; Jiang D; Lan X; An R
    Acta Biomater; 2023 Sep; 167():519-533. PubMed ID: 37328041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress and Trends in X-ray-Induced Photodynamic Therapy with Low Radiation Doses.
    He L; Yu X; Li W
    ACS Nano; 2022 Dec; 16(12):19691-19721. PubMed ID: 36378555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-responsive smart nanocarriers for wirelessly controlled photodynamic therapy for prostate cancers.
    Sun B; Liu J; Kim HJ; Rahmat JNB; Neoh KG; Zhang Y
    Acta Biomater; 2023 Nov; 171():553-564. PubMed ID: 37739246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomedicine-Based Strategies Assisting Photodynamic Therapy for Hypoxic Tumors: State-of-the-Art Approaches and Emerging Trends.
    Shih CY; Wang PT; Su WC; Teng H; Huang WL
    Biomedicines; 2021 Feb; 9(2):. PubMed ID: 33535466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep-penetrating photodynamic therapy with KillerRed mediated by upconversion nanoparticles.
    Liang L; Lu Y; Zhang R; Care A; Ortega TA; Deyev SM; Qian Y; Zvyagin AV
    Acta Biomater; 2017 Mar; 51():461-470. PubMed ID: 28063989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscintillator-Mediated X-Ray Induced Photodynamic Therapy for Deep-Seated Tumors: From Concept to Biomedical Applications.
    Sun W; Zhou Z; Pratx G; Chen X; Chen H
    Theranostics; 2020; 10(3):1296-1318. PubMed ID: 31938066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable therapeutic nanoscale covalent organic framework for photodynamic therapy and hypoxia-activated cascade chemotherapy.
    He H; Du L; Xue H; Wu J; Shuai X
    Acta Biomater; 2022 Sep; 149():297-306. PubMed ID: 35811069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PEG-PLGA nanospheres loaded with nanoscintillators and photosensitizers for radiation-activated photodynamic therapy.
    Dinakaran D; Sengupta J; Pink D; Raturi A; Chen H; Usmani N; Kumar P; Lewis JD; Narain R; Moore RB
    Acta Biomater; 2020 Nov; 117():335-348. PubMed ID: 32956872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super-efficient
    Han R; Zhao M; Wang Z; Liu H; Zhu S; Huang L; Wang Y; Wang L; Hong Y; Sha Y; Jiang Y
    ACS Nano; 2020 Aug; 14(8):9532-9544. PubMed ID: 31670942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray excited luminescent nanoparticles for deep photodynamic therapy.
    Yao B; Liu X; Zhang W; Lu H
    RSC Adv; 2023 Oct; 13(43):30133-30150. PubMed ID: 37849702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy.
    Zhou Z; Song J; Nie L; Chen X
    Chem Soc Rev; 2016 Nov; 45(23):6597-6626. PubMed ID: 27722328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.