These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 33445891)
21. Accelerating Pan X; Van R; Epifanovsky E; Liu J; Pu J; Nam K; Shao Y J Phys Chem B; 2022 Jun; ():. PubMed ID: 35653199 [TBL] [Abstract][Full Text] [Related]
22. Long-range electrostatic corrections in multipolar/polarizable QM/MM simulations. Kratz EG; Duke RE; Cisneros GA Theor Chem Acc; 2016 Jul; 135(7):. PubMed ID: 28367078 [TBL] [Abstract][Full Text] [Related]
23. Self-Consistent Polarization of the Boundary in the Redistributed Charge and Dipole Scheme for Combined Quantum-Mechanical and Molecular-Mechanical Calculations. Zhang Y; Lin H; Truhlar DG J Chem Theory Comput; 2007 Jul; 3(4):1378-98. PubMed ID: 26633210 [TBL] [Abstract][Full Text] [Related]
24. Accelerated Quantum Mechanics/Molecular Mechanics Simulations via Neural Networks Incorporated with Mechanical Embedding Scheme. Zhou B; Zhou Y; Xie D J Chem Theory Comput; 2023 Feb; 19(4):1157-1169. PubMed ID: 36724190 [TBL] [Abstract][Full Text] [Related]
25. Reliable treatment of electrostatics in combined QM/MM simulation of macromolecules. Schaefer P; Riccardi D; Cui Q J Chem Phys; 2005 Jul; 123(1):014905. PubMed ID: 16035867 [TBL] [Abstract][Full Text] [Related]
26. Combined Quantum Mechanical and Molecular Mechanical Methods for Calculating Potential Energy Surfaces: Tuned and Balanced Redistributed-Charge Algorithm. Wang B; Truhlar DG J Chem Theory Comput; 2010 Feb; 6(2):359-69. PubMed ID: 26617295 [TBL] [Abstract][Full Text] [Related]
27. Born-Oppenheimer Ab Initio QM/MM Molecular Dynamics Simulations of Enzyme Reactions. Zhou Y; Wang S; Li Y; Zhang Y Methods Enzymol; 2016; 577():105-18. PubMed ID: 27498636 [TBL] [Abstract][Full Text] [Related]
28. Ambient-Potential Composite Ewald Method for ab Initio Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulation. Giese TJ; York DM J Chem Theory Comput; 2016 Jun; 12(6):2611-32. PubMed ID: 27171914 [TBL] [Abstract][Full Text] [Related]
29. Protein C-GeM: A Coarse-Grained Electron Model for Fast and Accurate Protein Electrostatics Prediction. Guan X; Leven I; Heidar-Zadeh F; Head-Gordon T J Chem Inf Model; 2021 Sep; 61(9):4357-4369. PubMed ID: 34490776 [TBL] [Abstract][Full Text] [Related]
30. Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins. Lu X; Cui Q J Phys Chem B; 2013 Feb; 117(7):2005-18. PubMed ID: 23347181 [TBL] [Abstract][Full Text] [Related]
31. Flexible-Boundary Quantum-Mechanical/Molecular-Mechanical Calculations: Partial Charge Transfer between the Quantum-Mechanical and Molecular-Mechanical Subsystems. Zhang Y; Lin H J Chem Theory Comput; 2008 Mar; 4(3):414-25. PubMed ID: 26620782 [TBL] [Abstract][Full Text] [Related]
32. Convergence in the QM-only and QM/MM modeling of enzymatic reactions: A case study for acetylene hydratase. Liao RZ; Thiel W J Comput Chem; 2013 Oct; 34(27):2389-97. PubMed ID: 23913757 [TBL] [Abstract][Full Text] [Related]
33. Development of a Robust Indirect Approach for MM → QM Free Energy Calculations That Combines Force-Matched Reference Potential and Bennett's Acceptance Ratio Methods. Giese TJ; York DM J Chem Theory Comput; 2019 Oct; 15(10):5543-5562. PubMed ID: 31507179 [TBL] [Abstract][Full Text] [Related]
34. An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches. Huang J; Mei Y; König G; Simmonett AC; Pickard FC; Wu Q; Wang LP; MacKerell AD; Brooks BR; Shao Y J Chem Theory Comput; 2017 Feb; 13(2):679-695. PubMed ID: 28081366 [TBL] [Abstract][Full Text] [Related]
35. A new smoothing function to introduce long-range electrostatic effects in QM/MM calculations. Fang D; Duke RE; Cisneros GA J Chem Phys; 2015 Jul; 143(4):044103. PubMed ID: 26233103 [TBL] [Abstract][Full Text] [Related]
36. Toward a new approach for determination of solute's charge distribution to analyze interatomic electrostatic interactions in quantum mechanical/molecular mechanical simulations. Yamada K; Koyano Y; Okamoto T; Asada T; Koga N; Nagaoka M J Comput Chem; 2011 Nov; 32(14):3092-104. PubMed ID: 21815177 [TBL] [Abstract][Full Text] [Related]
37. Solvent Boundary Potentials for Hybrid QM/MM Computations Using Classical Drude Oscillators: A Fully Polarizable Model. Boulanger E; Thiel W J Chem Theory Comput; 2012 Nov; 8(11):4527-38. PubMed ID: 26605612 [TBL] [Abstract][Full Text] [Related]
39. A new force field (ECEPP-05) for peptides, proteins, and organic molecules. Arnautova YA; Jagielska A; Scheraga HA J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746 [TBL] [Abstract][Full Text] [Related]
40. Atomic Level Anisotropy in the Electrostatic Modeling of Lone Pairs for a Polarizable Force Field Based on the Classical Drude Oscillator. Harder E; Anisimov VM; Vorobyov IV; Lopes PE; Noskov SY; MacKerell AD; Roux B J Chem Theory Comput; 2006 Nov; 2(6):1587-97. PubMed ID: 26627029 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]