These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33446060)

  • 1. White Matter Tract-Oriented Deformation Is Dependent on Real-Time Axonal Fiber Orientation.
    Zhou Z; Domel AG; Li X; Grant G; Kleiven S; Camarillo D; Zeineh M
    J Neurotrauma; 2021 Jun; 38(12):1730-1745. PubMed ID: 33446060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward a Comprehensive Delineation of White Matter Tract-Related Deformation.
    Zhou Z; Li X; Liu Y; Fahlstedt M; Georgiadis M; Zhan X; Raymond SJ; Grant G; Kleiven S; Camarillo D; Zeineh M
    J Neurotrauma; 2021 Dec; 38(23):3260-3278. PubMed ID: 34617451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From biomechanics to pathology: predicting axonal injury from patterns of strain after traumatic brain injury.
    Donat CK; Yanez Lopez M; Sastre M; Baxan N; Goldfinger M; Seeamber R; Müller F; Davies P; Hellyer P; Siegkas P; Gentleman S; Sharp DJ; Ghajari M
    Brain; 2021 Feb; 144(1):70-91. PubMed ID: 33454735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. White matter tract-oriented deformation predicts traumatic axonal brain injury and reveals rotational direction-specific vulnerabilities.
    Sullivan S; Eucker SA; Gabrieli D; Bradfield C; Coats B; Maltese MR; Lee J; Smith C; Margulies SS
    Biomech Model Mechanobiol; 2015 Aug; 14(4):877-96. PubMed ID: 25547650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fiber orientation downsampling compromises the computation of white matter tract-related deformation.
    Zhou Z; Wang T; Jörgens D; Li X
    J Mech Behav Biomed Mater; 2022 Aug; 132():105294. PubMed ID: 35636118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embedded axonal fiber tracts improve finite element model predictions of traumatic brain injury.
    Hajiaghamemar M; Wu T; Panzer MB; Margulies SS
    Biomech Model Mechanobiol; 2020 Jun; 19(3):1109-1130. PubMed ID: 31811417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-Scale White Matter Tract Embedded Brain Finite Element Model Predicts the Location of Traumatic Diffuse Axonal Injury.
    Hajiaghamemar M; Margulies SS
    J Neurotrauma; 2021 Jan; 38(1):144-157. PubMed ID: 32772838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An anatomically detailed and personalizable head injury model: Significance of brain and white matter tract morphological variability on strain.
    Li X; Zhou Z; Kleiven S
    Biomech Model Mechanobiol; 2021 Apr; 20(2):403-431. PubMed ID: 33037509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic finite element models for brain injury prediction: the sensitivity of axonal strain to white matter tract inter-subject variability.
    Giordano C; Zappalà S; Kleiven S
    Biomech Model Mechanobiol; 2017 Aug; 16(4):1269-1293. PubMed ID: 28233136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explicit Modeling of White Matter Axonal Fiber Tracts in a Finite Element Brain Model.
    Wu T; Alshareef A; Giudice JS; Panzer MB
    Ann Biomed Eng; 2019 Sep; 47(9):1908-1922. PubMed ID: 30877404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. White Matter Injury Susceptibility via Fiber Strain Evaluation Using Whole-Brain Tractography.
    Zhao W; Ford JC; Flashman LA; McAllister TW; Ji S
    J Neurotrauma; 2016 Oct; 33(20):1834-1847. PubMed ID: 26782139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Group-wise evaluation and comparison of white matter fiber strain and maximum principal strain in sports-related concussion.
    Ji S; Zhao W; Ford JC; Beckwith JG; Bolander RP; Greenwald RM; Flashman LA; Paulsen KD; McAllister TW
    J Neurotrauma; 2015 Apr; 32(7):441-54. PubMed ID: 24735430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the mechanics of axonal fiber tracts using the embedded finite element method.
    Garimella HT; Kraft RH
    Int J Numer Method Biomed Eng; 2017 May; 33(5):. PubMed ID: 27502006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Traumatic Brain Injury Identifies Distinct Early and Late Phase Axonal Conduction Deficits of White Matter Pathophysiology, and Reveals Intervening Recovery.
    Marion CM; Radomski KL; Cramer NP; Galdzicki Z; Armstrong RC
    J Neurosci; 2018 Oct; 38(41):8723-8736. PubMed ID: 30143572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multiscale computational approach to estimating axonal damage under inertial loading of the head.
    Wright RM; Post A; Hoshizaki B; Ramesh KT
    J Neurotrauma; 2013 Jan; 30(2):102-18. PubMed ID: 22992118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computation of axonal elongation in head trauma finite element simulation.
    Chatelin S; Deck C; Renard F; Kremer S; Heinrich C; Armspach JP; Willinger R
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1905-19. PubMed ID: 22098889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myelin and oligodendrocyte lineage cells in white matter pathology and plasticity after traumatic brain injury.
    Armstrong RC; Mierzwa AJ; Sullivan GM; Sanchez MA
    Neuropharmacology; 2016 Nov; 110(Pt B):654-659. PubMed ID: 25963414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An axonal strain injury criterion for traumatic brain injury.
    Wright RM; Ramesh KT
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):245-60. PubMed ID: 21476072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary Traumatic Axonopathy in Mice Subjected to Impact Acceleration: A Reappraisal of Pathology and Mechanisms with High-Resolution Anatomical Methods.
    Ziogas NK; Koliatsos VE
    J Neurosci; 2018 Apr; 38(16):4031-4047. PubMed ID: 29567804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain injury tolerance limit based on computation of axonal strain.
    Sahoo D; Deck C; Willinger R
    Accid Anal Prev; 2016 Jul; 92():53-70. PubMed ID: 27038501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.