BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 33446627)

  • 1. Alterations in Cerebral Hemodynamics During Microgravity: A Literature Review.
    Du J; Cui J; Yang J; Wang P; Zhang L; Luo B; Han B
    Med Sci Monit; 2021 Jan; 27():e928108. PubMed ID: 33446627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of short-term exposure to head-down tilt on cerebral hemodynamics: a prospective evaluation of a spaceflight analog using phase-contrast MRI.
    Marshall-Goebel K; Ambarki K; Eklund A; Malm J; Mulder E; Gerlach D; Bershad E; Rittweger J
    J Appl Physiol (1985); 2016 Jun; 120(12):1466-73. PubMed ID: 27013606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebral Hemodynamics During Exposure to Hypergravity (+G
    Saehle T
    Aerosp Med Hum Perform; 2022 Jul; 93(7):581-592. PubMed ID: 35859306
    [No Abstract]   [Full Text] [Related]  

  • 4. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data.
    Convertino VA
    J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral hemodynamics during microgravity.
    Gotoh TM; Tanaka K; Fujiki N; Matsuda T; Gao S; Morita H
    Biol Sci Space; 2003 Oct; 17(3):204-5. PubMed ID: 14676376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human cerebral autoregulation before, during and after spaceflight.
    Iwasaki K; Levine BD; Zhang R; Zuckerman JH; Pawelczyk JA; Diedrich A; Ertl AC; Cox JF; Cooke WH; Giller CA; Ray CA; Lane LD; Buckey JC; Baisch FJ; Eckberg DL; Robertson D; Biaggioni I; Blomqvist CG
    J Physiol; 2007 Mar; 579(Pt 3):799-810. PubMed ID: 17185344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of ocular hemodynamics and intracranial pressure on intraocular pressure during acute gravitational changes.
    Nelson ES; Mulugeta L; Feola A; Raykin J; Myers JG; Samuels BC; Ethier CR
    J Appl Physiol (1985); 2017 Aug; 123(2):352-363. PubMed ID: 28495842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Prediction of human orthostatic tolerance by changes in arterial and venous hemodynamics in the microgravity environment].
    Kotovskaia AR; Fomin GA
    Fiziol Cheloveka; 2013; 39(5):25-33. PubMed ID: 25509869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral circulation during acute microgravity induced by free drop in anesthetized rats.
    Gotoh TM; Fujiki N; Matsuda T; Gao S; Morita H
    Jpn J Physiol; 2003 Jun; 53(3):223-8. PubMed ID: 14529583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The effect of complex barometric exposure on hemodynamics during simulation of the physiological impacts microgravity in animals].
    Baranov VM; Tikhonov MA; Kotov AN; Donina ZhA; Lavrov IN
    Aviakosm Ekolog Med; 2001; 35(1):55-60. PubMed ID: 11385986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofluid modeling of the coupled eye-brain system and insights into simulated microgravity conditions.
    Salerni F; Repetto R; Harris A; Pinsky P; Prud'homme C; Szopos M; Guidoboni G
    PLoS One; 2019; 14(8):e0216012. PubMed ID: 31412033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The design of a digital cerebrovascular simulation model for teaching and research.
    Giannessi M; Ursino M; Murray WB
    Anesth Analg; 2008 Dec; 107(6):1997-2008. PubMed ID: 19020151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mathematical model of intracranial blood-cerebrospinal fluid dynamics system applied to the study of extreme conditions].
    Grigorian SS; Simonov LG; Tsaturian AK
    Kosm Biol Aviakosm Med; 1990; 24(2):25-9. PubMed ID: 2366500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of microgravity on cerebral blood flow and electrocortical activity.
    Klein T; Wollseiffen P; Sanders M; Claassen J; Carnahan H; Abeln V; Vogt T; Strüder HK; Schneider S
    Exp Brain Res; 2019 Apr; 237(4):1057-1062. PubMed ID: 30741333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intraocular/Intracranial pressure mismatch hypothesis for visual impairment syndrome in space.
    Zhang LF; Hargens AR
    Aviat Space Environ Med; 2014 Jan; 85(1):78-80. PubMed ID: 24479265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe head injury: absence of correlation to cerebral autoregulation.
    de Nadal M; Munar F; Poca MA; Sahuquillo J; Garnacho A; Rosselló J
    Anesthesiology; 2000 Jan; 92(1):11-9. PubMed ID: 10638893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiovascular adaptation to spaceflight.
    Hargens AR; Watenpaugh DE
    Med Sci Sports Exerc; 1996 Aug; 28(8):977-82. PubMed ID: 8871907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a mathematical model.
    Ursino M; Lodi CA
    Am J Physiol; 1998 May; 274(5):H1715-28. PubMed ID: 9612384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spaceflight and Neurosurgery: A Comprehensive Review of the Relevant Literature.
    Swinney CC; Allison Z
    World Neurosurg; 2018 Jan; 109():444-448. PubMed ID: 29061459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Emerging Role of Macrophages in Immune System Dysfunction under Real and Simulated Microgravity Conditions.
    Sun Y; Kuang Y; Zuo Z
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33652750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.