BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 33446627)

  • 21. Hemodynamic response to LBNP during the 14 month MIR spaceflight (94-95).
    Arbeille Ph; Fomina G; Pottier J; Porcher M; Coulon J; Kotovskaya A; Poliakov V
    J Gravit Physiol; 1996 Sep; 3(2):95-6. PubMed ID: 11540299
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The function of the autonomic nervous system during spaceflight.
    Mandsager KT; Robertson D; Diedrich A
    Clin Auton Res; 2015 Jun; 25(3):141-51. PubMed ID: 25820827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transient cerebral blood flow responses during microgravity.
    Klein T; Sanders M; Wollseiffen P; Carnahan H; Abeln V; Askew CD; Claassen JA; Schneider S
    Life Sci Space Res (Amst); 2020 May; 25():66-71. PubMed ID: 32414494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vascular adaptation to microgravity: what have we learned?
    Zhang LF
    J Appl Physiol (1985); 2001 Dec; 91(6):2415-30. PubMed ID: 11717201
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A computer simulation of short-term adaptations of cardiovascular hemodynamics in microgravity.
    Gerber B; Singh JL; Zhang Y; Liou W
    Comput Biol Med; 2018 Nov; 102():86-94. PubMed ID: 30253272
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Some mechanisms of modeling the hydrostatic component of hemodynamics in microgravity].
    Baranov VM; Tikhonov MA; Kotov AN; Kolesnikov VI
    Aviakosm Ekolog Med; 2000; 34(4):27-31. PubMed ID: 11186580
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MR-derived cerebral spinal fluid hydrodynamics as a marker and a risk factor for intracranial hypertension in astronauts exposed to microgravity.
    Kramer LA; Hasan KM; Sargsyan AE; Wolinsky JS; Hamilton DR; Riascos RF; Carson WK; Heimbigner J; Patel VS; Romo S; Otto C
    J Magn Reson Imaging; 2015 Dec; 42(6):1560-71. PubMed ID: 25920095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cardiovascular deconditioning and venous air embolism in simulated microgravity in the rat.
    Robinson RR; Doursout MF; Chelly JE; Powell MR; Little TM; Butler BD
    Aviat Space Environ Med; 1996 Sep; 67(9):835-40. PubMed ID: 9025798
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of cerebral perfusion pressure and autoregulation on intracranial dynamics: a modeling study.
    Giulioni M; Ursino M
    Neurosurgery; 1996 Nov; 39(5):1005-14; discussion 1014-5. PubMed ID: 8905758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Correlation of the cosmonauts' physiological reactions to +Gx loads during deorbit with the hemodynamic shifts in the period of short-term microgravity].
    Kotovskaia AR; Vil'-Vil'iams IF; Fomina GA
    Aviakosm Ekolog Med; 2005; 39(2):9-15. PubMed ID: 16078416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The headache of high altitude and microgravity--similarities with clinical syndromes of cerebral venous hypertension.
    Wilson MH; Imray CH; Hargens AR
    High Alt Med Biol; 2011; 12(4):379-86. PubMed ID: 22087727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cerebral cortical blood flow in rabbits during parabolic flights (hypergravity and microgravity).
    Florence G; Lemenn M; Desert S; Bourron F; Serra A; Bonnier R; Blanquie JP; Charbonné R; Seylaz J
    Eur J Appl Physiol Occup Physiol; 1998 Apr; 77(5):469-78. PubMed ID: 9562300
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological effects of microgravity on bone cells.
    Arfat Y; Xiao WZ; Iftikhar S; Zhao F; Li DJ; Sun YL; Zhang G; Shang P; Qian AR
    Calcif Tissue Int; 2014 Jun; 94(6):569-79. PubMed ID: 24687524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Altered cell function in microgravity.
    Hughes-Fulford M
    Exp Gerontol; 1991; 26(2-3):247-56. PubMed ID: 1915694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic Cerebrovascular and Intracranial Pressure Reactivity Assessment of Impaired Cerebrovascular Autoregulation in Intracranial Hypertension.
    Bragin DE; Statom G; Nemoto EM
    Acta Neurochir Suppl; 2016; 122():255-60. PubMed ID: 27165917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cerebrovascular tone rather than intracranial pressure determines the effective downstream pressure of the cerebral circulation in the absence of intracranial hypertension.
    Weyland A; Buhre W; Grund S; Ludwig H; Kazmaier S; Weyland W; Sonntag H
    J Neurosurg Anesthesiol; 2000 Jul; 12(3):210-6. PubMed ID: 10905568
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics.
    Ursino M; Lodi CA
    J Appl Physiol (1985); 1997 Apr; 82(4):1256-69. PubMed ID: 9104864
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computer simulation of cerebrovascular circulation: assessment of intracranial hemodynamics during induction of anesthesia.
    Bekker A; Wolk S; Turndorf H; Kristol D; Ritter A
    J Clin Monit; 1996 Nov; 12(6):433-44. PubMed ID: 8982908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impacts of Microgravity Analogs to Spaceflight on Cerebral Autoregulation.
    Kermorgant M; Nasr N; Czosnyka M; Arvanitis DN; Hélissen O; Senard JM; Pavy-Le Traon A
    Front Physiol; 2020; 11():778. PubMed ID: 32719617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thrombotic triad in microgravity.
    Elahi MM; Witt AN; Pryzdial ELG; McBeth PB
    Thromb Res; 2024 Jan; 233():82-87. PubMed ID: 38029549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.