BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 33446663)

  • 1. Emergency deployment of direct air capture as a response to the climate crisis.
    Hanna R; Abdulla A; Xu Y; Victor DG
    Nat Commun; 2021 Jan; 12(1):368. PubMed ID: 33446663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target.
    Tong D; Zhang Q; Zheng Y; Caldeira K; Shearer C; Hong C; Qin Y; Davis SJ
    Nature; 2019 Aug; 572(7769):373-377. PubMed ID: 31261374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct air capture of CO
    Ozkan M
    MRS Energy Sustain; 2021; 8(2):51-56. PubMed ID: 38624600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cost Analysis of Direct Air Capture and Sequestration Coupled to Low-Carbon Thermal Energy in the United States.
    McQueen N; Psarras P; Pilorgé H; Liguori S; He J; Yuan M; Woodall CM; Kian K; Pierpoint L; Jurewicz J; Lucas JM; Jacobson R; Deich N; Wilcox J
    Environ Sci Technol; 2020 Jun; 54(12):7542-7551. PubMed ID: 32412237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current status and pillars of direct air capture technologies.
    Ozkan M; Nayak SP; Ruiz AD; Jiang W
    iScience; 2022 Apr; 25(4):103990. PubMed ID: 35310937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation and adaptation emissions embedded in the broader climate transition.
    Lesk C; Csala D; Hasse R; Sgouridis S; Levesque A; Mach KJ; Horen Greenford D; Matthews HD; Horton RM
    Proc Natl Acad Sci U S A; 2022 Nov; 119(47):e2123486119. PubMed ID: 36399549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging trends in direct air capture of CO
    Abdullatif Y; Sodiq A; Mir N; Bicer Y; Al-Ansari T; El-Naas MH; Amhamed AI
    RSC Adv; 2023 Feb; 13(9):5687-5722. PubMed ID: 36816069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.
    White CM; Strazisar BR; Granite EJ; Hoffman JS; Pennline HW;
    J Air Waste Manag Assoc; 2003 Jun; 53(6):645-715. PubMed ID: 12828330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining national greenhouse gas emissions from waste-to-energy using the Balance Method.
    Schwarzböck T; Rechberger H; Cencic O; Fellner J
    Waste Manag; 2016 Mar; 49():263-271. PubMed ID: 26847720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Life Cycle Assessment Case Study of Coal-Fired Electricity Generation with Humidity Swing Direct Air Capture of CO
    van der Giesen C; Meinrenken CJ; Kleijn R; Sprecher B; Lackner KS; Kramer GJ
    Environ Sci Technol; 2017 Jan; 51(2):1024-1034. PubMed ID: 27935700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating a social cost of carbon for global energy consumption.
    Rode A; Carleton T; Delgado M; Greenstone M; Houser T; Hsiang S; Hultgren A; Jina A; Kopp RE; McCusker KE; Nath I; Rising J; Yuan J
    Nature; 2021 Oct; 598(7880):308-314. PubMed ID: 34646000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postcombustion Capture or Direct Air Capture in Decarbonizing US Natural Gas Power?
    Azarabadi H; Lackner KS
    Environ Sci Technol; 2020 Apr; 54(8):5102-5111. PubMed ID: 32212696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathways limiting warming to 1.5°C: a tale of turning around in no time?
    Kriegler E; Luderer G; Bauer N; Baumstark L; Fujimori S; Popp A; Rogelj J; Strefler J; van Vuuren DP
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2119):. PubMed ID: 29610367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Well below 2 °C: Mitigation strategies for avoiding dangerous to catastrophic climate changes.
    Xu Y; Ramanathan V
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):10315-10323. PubMed ID: 28912354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Direct Air Capture Integrated with Wind Energy and Enhanced Oil Recovery.
    Datta A; Krishnamoorti R
    Environ Sci Technol; 2023 Feb; 57(5):2084-2092. PubMed ID: 36692891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospects for future climate change and the reasons for early action.
    MacCracken MC
    J Air Waste Manag Assoc; 2008 Jun; 58(6):735-86. PubMed ID: 18581807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental trade-offs of direct air capture technologies in climate change mitigation toward 2100.
    Qiu Y; Lamers P; Daioglou V; McQueen N; de Boer HS; Harmsen M; Wilcox J; Bardow A; Suh S
    Nat Commun; 2022 Jun; 13(1):3635. PubMed ID: 35752628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prioritizing Non-Carbon Dioxide Removal Mitigation Strategies Could Reduce the Negative Impacts Associated with Large-Scale Reliance on Negative Emissions.
    Ampah JD; Jin C; Liu H; Afrane S; Adun H; Morrow D; Ho DT
    Environ Sci Technol; 2024 Feb; 58(8):3755-3765. PubMed ID: 38285506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Air-quality-related health impacts from climate change and from adaptation of cooling demand for buildings in the eastern United States: An interdisciplinary modeling study.
    Abel DW; Holloway T; Harkey M; Meier P; Ahl D; Limaye VS; Patz JA
    PLoS Med; 2018 Jul; 15(7):e1002599. PubMed ID: 29969461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrofuel Synthesis from Variable Renewable Electricity: An Optimization-Based Techno-Economic Analysis.
    Sherwin ED
    Environ Sci Technol; 2021 Jun; 55(11):7583-7594. PubMed ID: 33983018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.