BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33446771)

  • 1. Design and testing of a soft parallel robot based on pneumatic artificial muscles for wrist rehabilitation.
    Wang Y; Xu Q
    Sci Rep; 2021 Jan; 11(1):1273. PubMed ID: 33446771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Research on assist-as-needed control strategy of wrist function-rehabilitation robot].
    Wang J; Zuo G; Zhang J; Shi C; Song T; Guo S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):129-135. PubMed ID: 32096386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Portable and Reconfigurable Wrist Robot Improves Hand Function for Post-Stroke Subjects.
    Khor KX; Chin PJH; Yeong CF; Su ELM; Narayanan ALT; Abdul Rahman H; Khan QI
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1864-1873. PubMed ID: 28410110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and control of a 3-DOF rehabilitation robot for forearm and wrist.
    Lincong Luo ; Liang Peng ; Zengguang Hou ; Weiqun Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4127-4130. PubMed ID: 29060805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of Wrist Gimbal: a forearm and wrist exoskeleton for stroke rehabilitation.
    Martinez JA; Ng P; Lu S; Campagna MS; Celik O
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650459. PubMed ID: 24187276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation.
    Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P
    J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal haptic drive: a robot for arm and wrist rehabilitation.
    Oblak J; Cikajlo I; Matjacić Z
    IEEE Trans Neural Syst Rehabil Eng; 2010 Jun; 18(3):293-302. PubMed ID: 19846386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supinator Extender (SUE): a pneumatically actuated robot for forearm/wrist rehabilitation after stroke.
    Allington J; Spencer SJ; Klein J; Buell M; Reinkensmeyer DJ; Bobrow J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1579-82. PubMed ID: 22254624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research and development of compact wrist rehabilitation robot system.
    Yamamoto I; Inagawa N; Matsui M; Hachisuka K; Wada F; Hachisuka A
    Biomed Mater Eng; 2014; 24(1):123-8. PubMed ID: 24211891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-stroke wrist rehabilitation assisted with an intention-driven functional electrical stimulation (FES)-robot system.
    Hu XL; Tong KY; Li R; Chen M; Xue JJ; Ho SK; Chen PN
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975424. PubMed ID: 22275625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke.
    Rong W; Li W; Pang M; Hu J; Wei X; Yang B; Wai H; Zheng X; Hu X
    J Neuroeng Rehabil; 2017 Apr; 14(1):34. PubMed ID: 28446181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. State of the art in parallel ankle rehabilitation robot: a systematic review.
    Dong M; Zhou Y; Li J; Rong X; Fan W; Zhou X; Kong Y
    J Neuroeng Rehabil; 2021 Mar; 18(1):52. PubMed ID: 33743757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wrist-RoboHab: a robot for treatment and evaluation of brain injury patients.
    Baniasad MA; Farahmand M; Ansari NN
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975506. PubMed ID: 22275702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Randomized, sham-controlled trial based on transcranial direct current stimulation and wrist robot-assisted integrated treatment on subacute stroke patients: Intermediate results.
    Mazzoleni S; Tran VD; Iardella L; Dario P; Posteraro F
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():555-560. PubMed ID: 28813878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Transcranial Direct Current Stimulation (tDCS) Combined With Wrist Robot-Assisted Rehabilitation on Motor Recovery in Subacute Stroke Patients: A Randomized Controlled Trial.
    Mazzoleni S; Tran VD; Dario P; Posteraro F
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1458-1466. PubMed ID: 31170077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a Lightweight Soft Robotic Arm Using Pneumatic Artificial Muscles and Inflatable Sleeves.
    Ohta P; Valle L; King J; Low K; Yi J; Atkeson CG; Park YL
    Soft Robot; 2018 Apr; 5(2):204-215. PubMed ID: 29648951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematics and workspace analysis of a robotic device for performing rehabilitation therapy of upper limb in stroke-affected patients.
    Valayil TP; Augustine RS
    Acta Bioeng Biomech; 2021; 23(3):175-189. PubMed ID: 34978313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a series elastic actuator for a compliant parallel wrist rehabilitation robot.
    Sergi F; Lee MM; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650481. PubMed ID: 24187298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myoelectrically controlled wrist robot for stroke rehabilitation.
    Song R; Tong KY; Hu X; Zhou W
    J Neuroeng Rehabil; 2013 Jun; 10():52. PubMed ID: 23758925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wrist proprioceptive acuity: A comprehensive robot-aided assessment.
    Cappello L; Contu S; Konczak J; Masia L
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3594-7. PubMed ID: 26737070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.