These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33446861)

  • 1. Freestanding bilayer plasmonic waveguide coupling mechanism for ultranarrow electromagnetic-induced transparency band generation.
    Yu L; Liang Y; Chu S; Gao H; Wang Q; Peng W
    Sci Rep; 2021 Jan; 11(1):1437. PubMed ID: 33446861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable plasmon-induced transparency in hybrid waveguide-magnetic resonance system.
    Song J; Song Y; Li K; Zhang Z; Wei X; Xu Y; Song G
    Appl Opt; 2015 Mar; 54(9):2279-82. PubMed ID: 25968511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
    Li Z; Butun S; Aydin K
    ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable coupling-induced transparency band due to coupled localized electric resonance and quasiguided photonic mode in hybrid plasmonic system.
    Liu J; Xu B; Hu H; Zhang J; Wei X; Xu Y; Song G
    Opt Express; 2013 Jun; 21(11):13386-93. PubMed ID: 23736590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fano-like coupling between two oppositely enhanced processes by diffraction in a dielectric grating.
    Zhang J; Zhang X
    Opt Express; 2015 Nov; 23(23):30429-37. PubMed ID: 26698522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method proposing a slow light ring resonator structure coupled with a metal-dielectric-metal waveguide system based on plasmonic induced transparency.
    Keleshtery MH; Kaatuzian H; Mir A; Zandi A
    Appl Opt; 2017 May; 56(15):4496-4504. PubMed ID: 29047882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mid-infrared subwavelength modulator based on grating-assisted coupling of a hybrid plasmonic waveguide mode to a graphene plasmon.
    Kim Y; Kwon MS
    Nanoscale; 2017 Nov; 9(44):17429-17438. PubMed ID: 29104985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured hybrid plasmonic waveguide in a slot structure for high-performance light transmission.
    Huang CC; Chang RJ; Huang CC
    Opt Express; 2021 Aug; 29(18):29341-29356. PubMed ID: 34615045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid low-permittivity slot-rib plasmonic waveguide based on monolayer two dimensional transition metal dichalcogenide with ultra-high energy confinement.
    Zheng K; Song J; Qu J
    Opt Express; 2018 Jun; 26(12):15819-15824. PubMed ID: 30114837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ultranarrow SPR linewidth in the UV region for plasmonic sensing.
    Zheng J; Yang W; Wang J; Zhu J; Qian L; Yang Z
    Nanoscale; 2019 Mar; 11(9):4061-4066. PubMed ID: 30776034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultraviolet graphene ultranarrow absorption engineered by lattice plasmon resonance.
    Yan Z; Lu X; Du W; Lv Z; Tang C; Cai P; Gu P; Chen J; Yu Z
    Nanotechnology; 2021 Aug; 32(46):. PubMed ID: 34352738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric hybrid plasmonic waveguides with centimeter-scale propagation length under subwavelength confinement for photonic components.
    Wei W; Zhang X; Ren X
    Nanoscale Res Lett; 2014; 9(1):599. PubMed ID: 25400529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromagnetically induced transparency in an all-dielectric nano-metamaterial for slow light application.
    Wang Q; Yu L; Gao H; Chu S; Peng W
    Opt Express; 2019 Nov; 27(24):35012-35026. PubMed ID: 31878678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromagnetic plasmon propagation and coupling through gold nanoring heptamers: a route to design optimized telecommunication photonic nanostructures.
    Ahmadivand A; Golmohammadi S
    Appl Opt; 2014 Jun; 53(18):3832-40. PubMed ID: 24979412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm.
    Liu B; Chen S; Zhang J; Yao X; Zhong J; Lin H; Huang T; Yang Z; Zhu J; Liu S; Lienau C; Wang L; Ren B
    Adv Mater; 2018 Mar; 30(12):e1706031. PubMed ID: 29405444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband silicon optical modulator using a graphene-integrated hybrid plasmonic waveguide.
    Shin JS; Kim JT
    Nanotechnology; 2015 Sep; 26(36):365201. PubMed ID: 26293975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications.
    Yong Z; Zhang S; Gong C; He S
    Sci Rep; 2016 Apr; 6():24063. PubMed ID: 27046540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared Perfect Ultra-narrow Band Absorber as Plasmonic Sensor.
    Wu D; Liu Y; Li R; Chen L; Ma R; Liu C; Ye H
    Nanoscale Res Lett; 2016 Dec; 11(1):483. PubMed ID: 27807825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures.
    Gallinet B; Martin OJ
    ACS Nano; 2013 Aug; 7(8):6978-87. PubMed ID: 23869857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.