These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33447023)

  • 1. Prediction of Obstructive Lung Disease from Chest Radiographs via Deep Learning Trained on Pulmonary Function Data.
    Schroeder JD; Bigolin Lanfredi R; Li T; Chan J; Vachet C; Paine Iii R; Srikumar V; Tasdizen T
    Int J Chron Obstruct Pulmon Dis; 2020; 15():3455-3466. PubMed ID: 33447023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning Prediction of Survival in Patients with Chronic Obstructive Pulmonary Disease Using Chest Radiographs.
    Nam JG; Kang HR; Lee SM; Kim H; Rhee C; Goo JM; Oh YM; Lee CH; Park CM
    Radiology; 2022 Oct; 305(1):199-208. PubMed ID: 35670713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of Pneumothorax with Deep Learning Models: Learning From Radiologist Labels vs Natural Language Processing Model Generated Labels.
    Hallinan JTPD; Feng M; Ng D; Sia SY; Tiong VTY; Jagmohan P; Makmur A; Thian YL
    Acad Radiol; 2022 Sep; 29(9):1350-1358. PubMed ID: 34649780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of radiologist versus natural language processing-based image annotations for deep learning system for tuberculosis screening on chest radiographs.
    Yi PH; Kim TK; Lin CT
    Clin Imaging; 2022 Jul; 87():34-37. PubMed ID: 35483162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of deep learning-based computer-aided detection system: detecting pneumothorax on chest radiograph after biopsy.
    Park S; Lee SM; Kim N; Choe J; Cho Y; Do KH; Seo JB
    Eur Radiol; 2019 Oct; 29(10):5341-5348. PubMed ID: 30915557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning-based Approach to Predict Pulmonary Function at Chest CT.
    Park H; Yun J; Lee SM; Hwang HJ; Seo JB; Jung YJ; Hwang J; Lee SH; Lee SW; Kim N
    Radiology; 2023 Apr; 307(2):e221488. PubMed ID: 36786699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COPD identification and grading based on deep learning of lung parenchyma and bronchial wall in chest CT images.
    Zhang L; Jiang B; Wisselink HJ; Vliegenthart R; Xie X
    Br J Radiol; 2022 May; 95(1133):20210637. PubMed ID: 35143286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic Obstructive Pulmonary Disease: Thoracic CT Texture Analysis and Machine Learning to Predict Pulmonary Ventilation.
    Westcott A; Capaldi DPI; McCormack DG; Ward AD; Fenster A; Parraga G
    Radiology; 2019 Dec; 293(3):676-684. PubMed ID: 31638491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated MR-based lung volume segmentation in population-based whole-body MR imaging: correlation with clinical characteristics, pulmonary function testing and obstructive lung disease.
    Mueller J; Karrasch S; Lorbeer R; Ivanovska T; Pomschar A; Kunz WG; von Krüchten R; Peters A; Bamberg F; Schulz H; Schlett CL
    Eur Radiol; 2019 Mar; 29(3):1595-1606. PubMed ID: 30151641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists.
    Rajpurkar P; Irvin J; Ball RL; Zhu K; Yang B; Mehta H; Duan T; Ding D; Bagul A; Langlotz CP; Patel BN; Yeom KW; Shpanskaya K; Blankenberg FG; Seekins J; Amrhein TJ; Mong DA; Halabi SS; Zucker EJ; Ng AY; Lungren MP
    PLoS Med; 2018 Nov; 15(11):e1002686. PubMed ID: 30457988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative assessment of pulmonary vascular alterations in chronic obstructive lung disease: Associations with pulmonary function test and survival in the KOLD cohort.
    Cho YH; Lee SM; Seo JB; Kim N; Bae JP; Lee JS; Oh YM; Do-Lee S
    Eur J Radiol; 2018 Nov; 108():276-282. PubMed ID: 30396668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Sixty-four slice spiral CT low-dose chest two-phase scanning for lung density measurement in assessing the pulmonary function in patients with chronic obstructive pulmonary disease].
    Zhang L; Wang Y
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2012 Nov; 37(11):1156-62. PubMed ID: 23202631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep neural network analyses of spirometry for structural phenotyping of chronic obstructive pulmonary disease.
    Bodduluri S; Nakhmani A; Reinhardt JM; Wilson CG; McDonald ML; Rudraraju R; Jaeger BC; Bhakta NR; Castaldi PJ; Sciurba FC; Zhang C; Bangalore PV; Bhatt SP
    JCI Insight; 2020 Jul; 5(13):. PubMed ID: 32554922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning to detect acute respiratory distress syndrome on chest radiographs: a retrospective study with external validation.
    Sjoding MW; Taylor D; Motyka J; Lee E; Co I; Claar D; McSparron JI; Ansari S; Kerlin MP; Reilly JP; Shashaty MGS; Anderson BJ; Jones TK; Drebin HM; Ittner CAG; Meyer NJ; Iwashyna TJ; Ward KR; Gillies CE
    Lancet Digit Health; 2021 Jun; 3(6):e340-e348. PubMed ID: 33893070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Convolutional Neural Networks for Automated Classification of Chest Radiographs.
    Dunnmon JA; Yi D; Langlotz CP; Ré C; Rubin DL; Lungren MP
    Radiology; 2019 Feb; 290(2):537-544. PubMed ID: 30422093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards large-scale case-finding: training and validation of residual networks for detection of chronic obstructive pulmonary disease using low-dose CT.
    Tang LYW; Coxson HO; Lam S; Leipsic J; Tam RC; Sin DD
    Lancet Digit Health; 2020 May; 2(5):e259-e267. PubMed ID: 33328058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and staging of chronic obstructive pulmonary disease using a computed tomography-based weakly supervised deep learning approach.
    Sun J; Liao X; Yan Y; Zhang X; Sun J; Tan W; Liu B; Wu J; Guo Q; Gao S; Li Z; Wang K; Li Q
    Eur Radiol; 2022 Aug; 32(8):5319-5329. PubMed ID: 35201409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A promising approach for screening pulmonary hypertension based on frontal chest radiographs using deep learning: A retrospective study.
    Zou XL; Ren Y; Feng DY; He XQ; Guo YF; Yang HL; Li X; Fang J; Li Q; Ye JJ; Han LQ; Zhang TT
    PLoS One; 2020; 15(7):e0236378. PubMed ID: 32706807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normative Data of Pulmonary Function Tests and Radiographic Measures of Chest Development in Children Without Spinal Deformity: Is a T1-T12 Height of 22 cm Adequate?
    Theologis AA; Smith J; Kerstein M; Gregory JR; Luhmann SJ
    Spine Deform; 2019 Nov; 7(6):857-864. PubMed ID: 31731994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning to Determine the Activity of Pulmonary Tuberculosis on Chest Radiographs.
    Lee S; Yim JJ; Kwak N; Lee YJ; Lee JK; Lee JY; Kim JS; Kang YA; Jeon D; Jang MJ; Goo JM; Yoon SH
    Radiology; 2021 Nov; 301(2):435-442. PubMed ID: 34342505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.