These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 33447981)
61. Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Rai-Kalal P; Jajoo A Plant Physiol Biochem; 2021 Mar; 160():341-351. PubMed ID: 33548801 [TBL] [Abstract][Full Text] [Related]
62. Biosynthesis of MgO nanoparticles using mushroom extract: effect on peanut ( Jhansi K; Jayarambabu N; Reddy KP; Reddy NM; Suvarna RP; Rao KV; Kumar VR; Rajendar V 3 Biotech; 2017 Aug; 7(4):263. PubMed ID: 28791210 [TBL] [Abstract][Full Text] [Related]
63. Biological interaction levels of zinc oxide nanoparticles; lettuce seeds as case study. Rawashdeh RY; Harb AM; AlHasan AM Heliyon; 2020 May; 6(5):e03983. PubMed ID: 32509982 [TBL] [Abstract][Full Text] [Related]
64. Enhancement in Seed Priming-Induced Starch Degradation of Rice Seed Under Chilling Stress via GA-Mediated α-Amylase Expression. Nie L; Song S; Yin Q; Zhao T; Liu H; He A; Wang W Rice (N Y); 2022 Mar; 15(1):19. PubMed ID: 35344097 [TBL] [Abstract][Full Text] [Related]
65. Genetic Diversity of Hydro Priming Effects on Rice Seed Emergence and Subsequent Growth under Different Moisture Conditions. Nakao Y; Sone C; Sakagami JI Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32854382 [TBL] [Abstract][Full Text] [Related]
66. Seed Priming with Nanoparticles and 24-Epibrassinolide Improved Seed Germination and Enzymatic Performance of Alhammad BA; Ahmad A; Seleiman MF; Tola E Plants (Basel); 2023 Feb; 12(4):. PubMed ID: 36840038 [TBL] [Abstract][Full Text] [Related]
67. Biogenic green synthesis of monodispersed gum kondagogu (Cochlospermum gossypium) iron nanocomposite material and its application in germination and growth of mung bean (Vigna radiata) as a plant model. Raju D; Mehta UJ; Beedu SR IET Nanobiotechnol; 2016 Jun; 10(3):141-6. PubMed ID: 27256894 [TBL] [Abstract][Full Text] [Related]
68. Optimization of chitosan nanoparticle synthesis and its potential application as germination elicitor of Oryza sativa L. Divya K; Vijayan S; Nair SJ; Jisha MS Int J Biol Macromol; 2019 Mar; 124():1053-1059. PubMed ID: 30476516 [TBL] [Abstract][Full Text] [Related]
69. Assessment of the Phytotoxicity of Metal Oxide Nanoparticles on Two Crop Plants, Maize (Zea mays L.) and Rice (Oryza sativa L.). Yang Z; Chen J; Dou R; Gao X; Mao C; Wang L Int J Environ Res Public Health; 2015 Nov; 12(12):15100-9. PubMed ID: 26633437 [TBL] [Abstract][Full Text] [Related]
70. Use of polymeric nanoparticles to improve seed germination and plant growth under copper stress. Xin X; Zhao F; Rho JY; Goodrich SL; Sumerlin BS; He Z Sci Total Environ; 2020 Nov; 745():141055. PubMed ID: 32736110 [TBL] [Abstract][Full Text] [Related]
71. Priming methods affected deterioration speed of primed rice seeds by regulating reactive oxygen species accumulation, seed respiration and starch degradation. Ren M; Tan B; Xu J; Yang Z; Zheng H; Tang Q; Zhang X; Wang W Front Plant Sci; 2023; 14():1267103. PubMed ID: 37868303 [TBL] [Abstract][Full Text] [Related]
72. Seed priming improves chilling tolerance in chickpea by modulating germination metabolism, trehalose accumulation and carbon assimilation. Farooq M; Hussain M; Nawaz A; Lee DJ; Alghamdi SS; Siddique KHM Plant Physiol Biochem; 2017 Feb; 111():274-283. PubMed ID: 27987472 [TBL] [Abstract][Full Text] [Related]
73. Stimulating effect of biogenic nanoparticles on the germination of basil (Ocimum basilicum L.) seeds. Sencan A; Kilic S; Kaya H Sci Rep; 2024 Jan; 14(1):1715. PubMed ID: 38242902 [TBL] [Abstract][Full Text] [Related]
74. Benefits of rice seed priming are offset permanently by prolonged storage and the storage conditions. Hussain S; Zheng M; Khan F; Khaliq A; Fahad S; Peng S; Huang J; Cui K; Nie L Sci Rep; 2015 Jan; 5():8101. PubMed ID: 25631923 [TBL] [Abstract][Full Text] [Related]
75. Synthesis and characterization of Lanthanum Oxide nanoparticles using Citrus aurantium and their effects on Citrus limon Germination and Callogenesis. Hanif Z; Jabeen N; Anwaar S; Aftab A; Hussain SZ; Anwar T; Qureshi H; Munazir M; Zaman W; Soufan W Sci Rep; 2024 Sep; 14(1):21737. PubMed ID: 39289487 [TBL] [Abstract][Full Text] [Related]
76. Interference of Nanoparticulates in seed invigoration of Green gram. K V S; K UB; Singh C; K V R; Pal G; Kumar A; S P JK; K R; Kamble U; Kumar S; Garlapati VK Plant Physiol Biochem; 2023 Feb; 195():256-265. PubMed ID: 36652847 [TBL] [Abstract][Full Text] [Related]
77. Effect of Fe Alkhatib R; Alkhatib B; Abdo N Environ Sci Pollut Res Int; 2021 Oct; 28(38):53568-53577. PubMed ID: 34031836 [TBL] [Abstract][Full Text] [Related]
78. Reactive Oxygen Species Generated by NADPH Oxidases Promote Radicle Protrusion and Root Elongation during Rice Seed Germination. Li WY; Chen BX; Chen ZJ; Gao YT; Chen Z; Liu J Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28098759 [TBL] [Abstract][Full Text] [Related]
79. Genome-wide association study reveals that the cupin domain protein OsCDP3.10 regulates seed vigour in rice. Peng L; Sun S; Yang B; Zhao J; Li W; Huang Z; Li Z; He Y; Wang Z Plant Biotechnol J; 2022 Mar; 20(3):485-498. PubMed ID: 34665915 [TBL] [Abstract][Full Text] [Related]
80. Influence of isopropylmalate synthase OsIPMS1 on seed vigour associated with amino acid and energy metabolism in rice. He Y; Cheng J; He Y; Yang B; Cheng Y; Yang C; Zhang H; Wang Z Plant Biotechnol J; 2019 Feb; 17(2):322-337. PubMed ID: 29947463 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]