These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 33448092)

  • 1. Supervisory control configurations design for nitrogen and phosphorus removal in wastewater treatment plants.
    Sheik AG; Seepana MM; Ambati SR
    Water Environ Res; 2021 Aug; 93(8):1289-1302. PubMed ID: 33448092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractional-order models identification and control within a supervisory control framework for efficient nutrients removal in biological wastewater treatment plants.
    Dey I; Sheik AG; Ambati SR
    Environ Sci Pollut Res Int; 2023 Feb; 30(6):16642-16660. PubMed ID: 36190640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of control strategies for nutrient removal in a biological wastewater treatment process.
    Shiek AG; Machavolu VSRK; Seepana MM; Ambati SR
    Environ Sci Pollut Res Int; 2021 Mar; 28(10):12092-12106. PubMed ID: 32506399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated supervisory and override control strategies for effective biological phosphorus removal and reduced operational costs in wastewater treatment processes.
    Sheik AG; Machavolu VRK; Seepana MM; Ambati SR
    Chemosphere; 2022 Jan; 287(Pt 3):132346. PubMed ID: 34826956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid supervised hierarchical control of a biological wastewater treatment plant.
    Ateunkeng JG; Boum AT; Bitjoka L
    Environ Sci Pollut Res Int; 2024 Mar; 31(14):21249-21266. PubMed ID: 38386158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractional order-based hierarchical controller design and evaluation with Bürger-Diehl settler model in a total nitrogen removal wastewater treatment process.
    Eagalapati SST; Sheik AG; Ambati SR
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):25559-25568. PubMed ID: 35499725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Experiment study on real-time controlling rules of A/O nitrogen removal process].
    Du H; Ma Y; Peng YZ; Wang BZ
    Huan Jing Ke Xue; 2005 Jul; 26(4):100-5. PubMed ID: 16212176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fuzzy-control for improved nitrogen removal and energy saving in WWT-plants with pre-denitrification.
    Meyer U; Pöpel HJ
    Water Sci Technol; 2003; 47(11):69-76. PubMed ID: 12906273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon and nutrient removal from on-site wastewater using extended-aeration activated sludge and ion exchange.
    Safferman SI; Burks BD; Parker RA
    Water Environ Res; 2004; 76(5):404-12. PubMed ID: 15523786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A supervisory control system for optimising nitrogen removal and aeration energy consumption in wastewater treatment plants.
    Serralta J; Ribes J; Seco A; Ferrer J
    Water Sci Technol; 2002; 45(4-5):309-16. PubMed ID: 11936648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time control strategies for predenitrification-nitrification activated sludge plants biodegradation control.
    Suescun J; Ostolaza X; Garcia-Sanz M; Ayesa E
    Water Sci Technol; 2001; 43(1):209-16. PubMed ID: 11379093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cost and effluent quality controllers design based on the relative gain array for a nutrient removal WWTP.
    Machado VC; Gabriel D; Lafuente J; Baeza JA
    Water Res; 2009 Dec; 43(20):5129-41. PubMed ID: 19815250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy saving for air supply in a real WWTP: application of a fuzzy logic controller.
    Bertanza G; Menoni L; Baroni P
    Water Sci Technol; 2020 Apr; 81(8):1552-1557. PubMed ID: 32644948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effluent quality improvement in sequencing batch reactor-based wastewater treatment processes using advanced control strategies.
    Dey I; Ambati SR; Bhos PN; Sonawane S; Pilli S
    Water Sci Technol; 2024 May; 89(10):2661-2675. PubMed ID: 38822606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of an activated sludge process with nitrogen removal--a benchmark study.
    Carlsson B; Rehnström A
    Water Sci Technol; 2002; 45(4-5):135-42. PubMed ID: 11936626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of nitrogen removal at WWTP Zürich Werdhöelzli after connection of WWTP Zürich-Glatt.
    Siegrist H; Rieger L; Fux Ch; Wehrli M
    Water Sci Technol; 2004; 50(7):35-43. PubMed ID: 15553456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based control structure design of a full-scale WWTP under the retrofitting process.
    Machado VC; Lafuente J; Baeza JA
    Water Sci Technol; 2015; 71(11):1661-71. PubMed ID: 26038931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel phased isolation ditch system for enhanced nutrient removal and its optimal operating strategy.
    Hong Ki; Chang D; Hur JM; Han SB
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003; 38(10):2179-89. PubMed ID: 14524672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen and phosphorus removal processes under different aeration strengths in the principal-type tank of alternate multiple tanks system and process control.
    Dai Z; Lu X; Jing Z
    Environ Technol; 2019 Jan; 40(4):489-498. PubMed ID: 29098940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of control strategies for nitrogen removal in an activated sludge process in terms of operating costs: a simulation study.
    Stare A; Vrecko D; Hvala N; Strmcnik S
    Water Res; 2007 May; 41(9):2004-14. PubMed ID: 17346768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.