These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33448103)

  • 41. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering.
    Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y
    Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect.
    Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG
    Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioactive electrospun nanocomposite scaffolds of poly(lactic acid)/cellulose nanocrystals for bone tissue engineering.
    Patel DK; Dutta SD; Hexiu J; Ganguly K; Lim KT
    Int J Biol Macromol; 2020 Nov; 162():1429-1441. PubMed ID: 32755711
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biomimetic Composite Scaffold Containing Small Intestinal Submucosa and Mesoporous Bioactive Glass Exhibits High Osteogenic and Angiogenic Capacity.
    Sun T; Liu M; Yao S; Ji Y; Xiong Z; Tang K; Chen K; Yang H; Guo X
    Tissue Eng Part A; 2018 Jul; 24(13-14):1044-1056. PubMed ID: 29350101
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metformin-Loaded PCL/PVA Fibrous Scaffold Preseeded with Human Endometrial Stem Cells for Effective Guided Bone Regeneration Membranes.
    Ebrahimi L; Farzin A; Ghasemi Y; Alizadeh A; Goodarzi A; Basiri A; Zahiri M; Monabati A; Ai J
    ACS Biomater Sci Eng; 2021 Jan; 7(1):222-231. PubMed ID: 33347290
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Controlled release of recombinant human cementum protein 1 from electrospun multiphasic scaffold for cementum regeneration.
    Chen X; Liu Y; Miao L; Wang Y; Ren S; Yang X; Hu Y; Sun W
    Int J Nanomedicine; 2016; 11():3145-58. PubMed ID: 27471382
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vivo evaluation of bone regeneration using ZIF8-modified polypropylene membrane in rat calvarium defects.
    Mousavi SJ; Ejeian F; Razmjou A; Nasr-Esfahani MH
    J Clin Periodontol; 2023 Oct; 50(10):1390-1405. PubMed ID: 37485621
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of 3D-Printed Polycaprolactone/β-Tricalcium Phosphate Membranes on Guided Bone Regeneration.
    Shim JH; Won JY; Park JH; Bae JH; Ahn G; Kim CH; Lim DH; Cho DW; Yun WS; Bae EB; Jeong CM; Huh JB
    Int J Mol Sci; 2017 Apr; 18(5):. PubMed ID: 28441338
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photocrosslinkable Col/PCL/Mg composite membrane providing spatiotemporal maintenance and positive osteogenetic effects during guided bone regeneration.
    Wang F; Xia D; Wang S; Gu R; Yang F; Zhao X; Liu X; Zhu Y; Liu H; Xu Y; Liu Y; Zhou Y
    Bioact Mater; 2022 Jul; 13():53-63. PubMed ID: 35224291
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrophilized polycaprolactone nanofiber mesh-embedded poly(glycolic-co-lactic acid) membrane for effective guided bone regeneration.
    Cho WJ; Kim JH; Oh SH; Nam HH; Kim JM; Lee JH
    J Biomed Mater Res A; 2009 Nov; 91(2):400-7. PubMed ID: 18980200
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Bilayer Membrane Doped with Struvite Nanowires for Guided Bone Regeneration.
    Zhu Y; Zhou J; Dai B; Liu W; Wang J; Li Q; Wang J; Zhao L; Ngai T
    Adv Healthc Mater; 2022 Sep; 11(18):e2201679. PubMed ID: 36026579
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation.
    Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H
    Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vitro and in vivo investigation of PLA/PCL scaffold coated with metformin-loaded gelatin nanocarriers in regeneration of critical-sized bone defects.
    Shahrezaee M; Salehi M; Keshtkari S; Oryan A; Kamali A; Shekarchi B
    Nanomedicine; 2018 Oct; 14(7):2061-2073. PubMed ID: 29964218
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Controlled release of vascular endothelial growth factor from spray-dried alginate microparticles in collagen-hydroxyapatite scaffolds for promoting vascularization and bone repair.
    Quinlan E; López-Noriega A; Thompson EM; Hibbitts A; Cryan SA; O'Brien FJ
    J Tissue Eng Regen Med; 2017 Apr; 11(4):1097-1109. PubMed ID: 25783558
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair.
    Quinlan E; Partap S; Azevedo MM; Jell G; Stevens MM; O'Brien FJ
    Biomaterials; 2015 Jun; 52():358-66. PubMed ID: 25818442
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biocompatibility Studies of Nanoengineered Polycaprolactone and Nanohydroxyapatite Scaffold for Craniomaxillofacial Bone Regeneration.
    Harikrishnan P; Islam H; Sivasamy A
    J Craniofac Surg; 2019 Jan; 30(1):265-269. PubMed ID: 30339597
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Visualizing Angiogenesis by Multiphoton Microscopy In Vivo in Genetically Modified 3D-PLGA/nHAp Scaffold for Calvarial Critical Bone Defect Repair.
    Li J; Jahr H; Zheng W; Ren PG
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28930985
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efficacy of rhBMP-2 Loaded PCL/
    Bae EB; Park KH; Shim JH; Chung HY; Choi JW; Lee JJ; Kim CH; Jeon HJ; Kang SS; Huh JB
    Biomed Res Int; 2018; 2018():2876135. PubMed ID: 29682530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.