These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33448135)

  • 1. Advanced High-Performance Potassium-Chalcogen (S, Se, Te) Batteries.
    Huang X; Sun J; Wang L; Tong X; Dou SX; Wang ZM
    Small; 2021 Feb; 17(6):e2004369. PubMed ID: 33448135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Potassium Storage Performance for K-Te Batteries
    Zhang Y; Liu C; Wu Z; Manaig D; Freschi DJ; Wang Z; Liu J
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16345-16354. PubMed ID: 33787196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Progress on Rechargeable Zn-X (X=S, Se, Te, I2, Br2) batteries.
    Du W; Song Z; Zheng X; Lv Y; Miao L; Gan L; Liu M
    ChemSusChem; 2024 Jun; ():e202400886. PubMed ID: 38899510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Progress in the Design of Advanced Cathode Materials and Battery Models for High-Performance Lithium-X (X = O
    Xu J; Ma J; Fan Q; Guo S; Dou S
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28488763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. State-Of-The-Art and Future Challenges in High Energy Lithium-Selenium Batteries.
    Sun J; Du Z; Liu Y; Ai W; Wang K; Wang T; Du H; Liu L; Huang W
    Adv Mater; 2021 Mar; 33(10):e2003845. PubMed ID: 33491836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppressing the Shuttle Effect via Polypyrrole-Coated Te Nanotubes for Advanced Na-Te Batteries.
    Kim M; Kim H; Kim W; Lee SY; Park YI; Shim YA; Jeon TY; Kim JY; Ahn CY; Shim H; Lee JE; Yu SH
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):34892-34901. PubMed ID: 38949109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tellurium: A High-Volumetric-Capacity Potassium-Ion Battery Electrode Material.
    Dong S; Yu D; Yang J; Jiang L; Wang J; Cheng L; Zhou Y; Yue H; Wang H; Guo L
    Adv Mater; 2020 Jun; 32(23):e1908027. PubMed ID: 32350944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries.
    Peng HJ; Huang JQ; Zhang Q
    Chem Soc Rev; 2017 Aug; 46(17):5237-5288. PubMed ID: 28783188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encapsulation of Se into Hierarchically Porous Carbon Microspheres with Optimized Pore Structure for Advanced Na-Se and K-Se Batteries.
    Kim JK; Kang YC
    ACS Nano; 2020 Oct; 14(10):13203-13216. PubMed ID: 32991145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Emerging Energy Storage System: Advanced Na-Se Batteries.
    Huang XL; Zhou C; He W; Sun S; Chueh YL; Wang ZM; Liu HK; Dou SX
    ACS Nano; 2021 Apr; 15(4):5876-5903. PubMed ID: 33788558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Room temperature liquid metals for flexible alkali metal-chalcogen batteries.
    Ren L; Zhang BW
    Exploration (Beijing); 2022 Oct; 2(5):20210182. PubMed ID: 37325500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Step In Situ Preparation of Polymeric Selenium Sulfide Composite as a Cathode Material for Enhanced Sodium/Potassium Storage.
    Zhang W; Wang H; Zhang N; Liu H; Chen Z; Zhang L; Guo S; Li D; Xu J
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29807-29813. PubMed ID: 31361119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Design Strategy of Novel Energy Storage Systems: Toward High-Performance Rechargeable Magnesium Batteries.
    Lei X; Liang X; Yang R; Zhang F; Wang C; Lee CS; Tang Y
    Small; 2022 Jun; 18(22):e2200418. PubMed ID: 35315220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical Insights, Developing Strategies, and Perspectives toward Advanced Potassium-Sulfur Batteries.
    Yuan X; Zhu B; Feng J; Wang C; Cai X; Qiao K; Qin R
    Small; 2020 Oct; 16(42):e2003386. PubMed ID: 32964701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new high-capacity and safe energy storage system: lithium-ion sulfur batteries.
    Liang X; Yun J; Wang Y; Xiang H; Sun Y; Feng Y; Yu Y
    Nanoscale; 2019 Nov; 11(41):19140-19157. PubMed ID: 31595921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Mono-Chalcogen Nanomaterials for Omnipotent Anticancer Applications: Progress and Challenges.
    Xing C; Yin P; Peng Z; Zhang H
    Adv Healthc Mater; 2020 Jul; 9(14):e2000273. PubMed ID: 32537940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Rational Reconfiguration of Electrolyte for High-Energy and Long-Life Lithium-Chalcogen Batteries.
    Wang WP; Zhang J; Yin YX; Duan H; Chou J; Li SY; Yan M; Xin S; Guo YG
    Adv Mater; 2020 Jun; 32(23):e2000302. PubMed ID: 32363631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges and Strategies toward Cathode Materials for Rechargeable Potassium-Ion Batteries.
    Liu S; Kang L; Jun SC
    Adv Mater; 2021 Nov; 33(47):e2004689. PubMed ID: 33448099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heteroatomic SenS8-n Molecules Confined in Nitrogen-Doped Mesoporous Carbons as Reversible Cathode Materials for High-Performance Lithium Batteries.
    Sun F; Cheng H; Chen J; Zheng N; Li Y; Shi J
    ACS Nano; 2016 Sep; 10(9):8289-98. PubMed ID: 27522865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Potassium-Tellurium Batteries Stabilized by Interface Engineering.
    Zhang Y; Zhu H; Freschi DJ; Liu J
    Small; 2022 Apr; 18(15):e2200085. PubMed ID: 35225427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.