BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 33448626)

  • 1. Maize endosperm development.
    Dai D; Ma Z; Song R
    J Integr Plant Biol; 2021 Apr; 63(4):613-627. PubMed ID: 33448626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatio-temporal analysis of coding and long noncoding transcripts during maize endosperm development.
    Kim ED; Xiong Y; Pyo Y; Kim DH; Kang BH; Sung S
    Sci Rep; 2017 Jun; 7(1):3838. PubMed ID: 28630499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OPAQUE11 Is a Central Hub of the Regulatory Network for Maize Endosperm Development and Nutrient Metabolism.
    Feng F; Qi W; Lv Y; Yan S; Xu L; Yang W; Yuan Y; Chen Y; Zhao H; Song R
    Plant Cell; 2018 Feb; 30(2):375-396. PubMed ID: 29436476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA sequencing of laser-capture microdissected compartments of the maize kernel identifies regulatory modules associated with endosperm cell differentiation.
    Zhan J; Thakare D; Ma C; Lloyd A; Nixon NM; Arakaki AM; Burnett WJ; Logan KO; Wang D; Wang X; Drews GN; Yadegari R
    Plant Cell; 2015 Mar; 27(3):513-31. PubMed ID: 25783031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomics at Maize Embryo/Endosperm Interfaces Identifies a Transcriptionally Distinct Endosperm Subdomain Adjacent to the Embryo Scutellum.
    Doll NM; Just J; Brunaud V; Caïus J; Grimault A; Depège-Fargeix N; Esteban E; Pasha A; Provart NJ; Ingram GC; Rogowsky PM; Widiez T
    Plant Cell; 2020 Apr; 32(4):833-852. PubMed ID: 32086366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Long Noncoding RNAs in the Developing Endosperm of Maize.
    Kim E; Xiong Y; Kang BH; Sung S
    Methods Mol Biol; 2019; 1933():49-65. PubMed ID: 30945178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A MYB-related transcription factor ZmMYBR29 is involved in grain filling.
    Wu JW; Wang XY; Yan RY; Zheng GM; Zhang L; Wang Y; Zhao YJ; Wang BH; Pu ML; Zhang XS; Zhao XY
    BMC Plant Biol; 2024 May; 24(1):458. PubMed ID: 38797860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. O11 is multi-functional regulator in maize endosperm.
    Feng F; Song R
    Plant Signal Behav; 2018 Apr; 13(4):e1451709. PubMed ID: 29533128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OS1 functions in the allocation of nutrients between the endosperm and embryo in maize seeds.
    Song W; Zhu J; Zhao H; Li Y; Liu J; Zhang X; Huang L; Lai J
    J Integr Plant Biol; 2019 Jun; 61(6):706-727. PubMed ID: 30506638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imprinted gene expression in maize starchy endosperm and aleurone tissues of reciprocal F1 hybrids at a defined developmental stage.
    Zhang M; Lv R; Yang W; Fu T; Liu B
    Genes Genomics; 2018 Jan; 40(1):99-107. PubMed ID: 29892900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signaling in Early Maize Kernel Development.
    Doll NM; Depège-Fargeix N; Rogowsky PM; Widiez T
    Mol Plant; 2017 Mar; 10(3):375-388. PubMed ID: 28267956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revisiting maize Brittle endosperm-2 reveals new insights in BETL development and starchy endosperm filling.
    Wang Y; Shi D; Zhu H; Yin H; Wang G; Yang A; Song Z; Jing Q; Shuai B; Xu N; Yang J; Chen H; Wang G
    Plant Sci; 2023 Jul; 332():111727. PubMed ID: 37149228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser microdissection transcriptome data derived gene regulatory networks of developing rice endosperm revealed tissue- and stage-specific regulators modulating starch metabolism.
    Ishimaru T; Parween S; Saito Y; Masumura T; Kondo M; Sreenivasulu N
    Plant Mol Biol; 2022 Mar; 108(4-5):443-467. PubMed ID: 35098404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward unveiling transcriptome dynamics and regulatory modules at the maternal/filial interface of developing maize kernel.
    He J; Wang J; Zhang Z
    Plant J; 2024 Jun; 118(6):2124-2140. PubMed ID: 38551088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing.
    Li G; Wang D; Yang R; Logan K; Chen H; Zhang S; Skaggs MI; Lloyd A; Burnett WJ; Laurie JD; Hunter BG; Dannenhoffer JM; Larkins BA; Drews GN; Wang X; Yadegari R
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7582-7. PubMed ID: 24821765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intra-Kernel Reallocation of Proteins in Maize Depends on VP1-Mediated Scutellum Development and Nutrient Assimilation.
    Zheng X; Li Q; Li C; An D; Xiao Q; Wang W; Wu Y
    Plant Cell; 2019 Nov; 31(11):2613-2635. PubMed ID: 31530735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative transcriptomics and network analysis define gene coexpression modules that control maize aleurone development and auxin signaling.
    Wu H; Becraft PW
    Plant Genome; 2021 Nov; 14(3):e20126. PubMed ID: 34323399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The
    Wu H; Gontarek BC; Yi G; Beall BD; Neelakandan AK; Adhikari B; Chen R; McCarty DR; Severin AJ; Becraft PW
    Plant Physiol; 2020 Oct; 184(2):960-972. PubMed ID: 32737073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The thick aleurone1 mutant defines a negative regulation of maize aleurone cell fate that functions downstream of defective kernel1.
    Yi G; Lauter AM; Scott MP; Becraft PW
    Plant Physiol; 2011 Aug; 156(4):1826-36. PubMed ID: 21617032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution spatiotemporal transcriptome analyses during cellularization of rice endosperm unveil the earliest gene regulation critical for aleurone and starchy endosperm cell fate specification.
    Takafuji Y; Shimizu-Sato S; Ta KN; Suzuki T; Nosaka-Takahashi M; Oiwa T; Kimura W; Katoh H; Fukai M; Takeda S; Sato Y; Hattori T
    J Plant Res; 2021 Sep; 134(5):1061-1081. PubMed ID: 34279738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.