BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 33448637)

  • 1. Design and fabrication of bone tissue scaffolds based on PCL/PHBV containing hydroxyapatite nanoparticles: dual-leaching technique.
    Nahanmoghadam A; Asemani M; Goodarzi V; Ebrahimi-Barough S
    J Biomed Mater Res A; 2021 Jun; 109(6):981-993. PubMed ID: 33448637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration.
    Thadavirul N; Pavasant P; Supaphol P
    J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth.
    Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM
    J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering.
    Park SA; Lee SH; Kim WD
    Bioprocess Biosyst Eng; 2011 May; 34(4):505-13. PubMed ID: 21170553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering.
    Gorodzha SN; Muslimov AR; Syromotina DS; Timin AS; Tcvetkov NY; Lepik KV; Petrova AV; Surmeneva MA; Gorin DA; Sukhorukov GB; Surmenev RA
    Colloids Surf B Biointerfaces; 2017 Dec; 160():48-59. PubMed ID: 28917149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Mech Behav Biomed Mater; 2015 Nov; 51():88-98. PubMed ID: 26232670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering.
    Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG
    Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration.
    Shitole AA; Raut PW; Sharma N; Giram P; Khandwekar AP; Garnaik B
    J Mater Sci Mater Med; 2019 Apr; 30(5):51. PubMed ID: 31011810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.
    Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified PHBV scaffolds by in situ UV polymerization: structural characteristic, mechanical properties and bone mesenchymal stem cell compatibility.
    Ke Y; Wang YJ; Ren L; Zhao QC; Huang W
    Acta Biomater; 2010 Apr; 6(4):1329-36. PubMed ID: 19853067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Additive Manufacturing of Wet-Spun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-Based Scaffolds Loaded with Hydroxyapatite.
    Pecorini G; Braccini S; Simoni S; Corti A; Parrini G; Puppi D
    Macromol Biosci; 2024 Jun; 24(6):e2300538. PubMed ID: 38534197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterisation of the scaffolds.
    Sultana N; Wang M
    J Mater Sci Mater Med; 2008 Jul; 19(7):2555-61. PubMed ID: 17665100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel process.
    Rezaei A; Mohammadi MR
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):390-6. PubMed ID: 25428086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of porosity and pore size on microstructures and mechanical properties of poly-epsilon-caprolactone- hydroxyapatite composites.
    Yu H; Matthew HW; Wooley PH; Yang SY
    J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):541-7. PubMed ID: 18335434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fabrication and characterization of biodegradable HA/PHBV nanoparticle-polymer composite scaffolds.
    Jack KS; Velayudhan S; Luckman P; Trau M; Grøndahl L; Cooper-White J
    Acta Biomater; 2009 Sep; 5(7):2657-67. PubMed ID: 19375396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.
    Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S
    Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Mechanically Reinforced Gelatin/Hydroxyapatite Bio-Composite Scaffolds by Core/Shell Nozzle Printing for Bone Tissue Engineering.
    Kim H; Hwangbo H; Koo Y; Kim G
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32403422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication techniques involved in developing the composite scaffolds PCL/HA nanoparticles for bone tissue engineering applications.
    Murugan S; Parcha SR
    J Mater Sci Mater Med; 2021 Aug; 32(8):93. PubMed ID: 34379204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.