BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33448786)

  • 1. Eco-Friendly AgBiS
    Xiao Y; Wang H; Awai F; Shibayama N; Kubo T; Segawa H
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3969-3978. PubMed ID: 33448786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emission Spectroscopy Investigation of the Enhancement of Carrier Collection Efficiency in AgBiS
    Xiao Y; Wang H; Awai F; Shibayama N; Kubo T; Segawa H
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6994-7003. PubMed ID: 35099930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution-Processed, Inverted AgBiS
    Chen D; Shivarudraiah SB; Geng P; Ng M; Li CA; Tewari N; Zou X; Wong KS; Guo L; Halpert JE
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1634-1642. PubMed ID: 34955017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency Enhancement of PbS Quantum Dot/ZnO Nanowire Bulk-Heterojunction Solar Cells by Plasmonic Silver Nanocubes.
    Kawawaki T; Wang H; Kubo T; Saito K; Nakazaki J; Segawa H; Tatsuma T
    ACS Nano; 2015 Apr; 9(4):4165-72. PubMed ID: 25785476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed AgBiS
    Burgués-Ceballos I; Wang Y; Konstantatos G
    Nanoscale; 2022 Mar; 14(13):4987-4993. PubMed ID: 35258069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carrier Dynamics of Efficient Triplet Harvesting in AgBiS
    Geng P; Chen D; Shivarudraiah SB; Chen X; Guo L; Halpert JE
    Adv Sci (Weinh); 2023 May; 10(13):e2300177. PubMed ID: 36938855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen-induced degradation in AgBiS
    Becker-Koch D; Albaladejo-Siguan M; Kress J; Kumar R; Hofstetter YJ; An Q; Bakulin AA; Paulus F; Vaynzof Y
    Nanoscale; 2022 Feb; 14(8):3020-3030. PubMed ID: 34937076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AgBiS
    Ju MG; Dai J; Ma L; Zhou Y; Zeng XC
    Nanoscale Adv; 2020 Feb; 2(2):770-776. PubMed ID: 36133252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-resistant AgBiS
    Oh JT; Bae SY; Ha SR; Cho H; Lim SJ; Boukhvalov DW; Kim Y; Choi H
    Nanoscale; 2019 May; 11(19):9633-9640. PubMed ID: 31065644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Branched nanowire photoelectrochemical electrodes for efficient solar water splitting.
    Kargar A; Sun K; Jing Y; Choi C; Jeong H; Jung GY; Jin S; Wang D
    ACS Nano; 2013 Oct; 7(10):9407-15. PubMed ID: 24040832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ZnO@Ag2S core-shell nanowire arrays for environmentally friendly solid-state quantum dot-sensitized solar cells with panchromatic light capture and enhanced electron collection.
    Zhang X; Liu J; Zhang J; Vlachopoulos N; Johansson EM
    Phys Chem Chem Phys; 2015 May; 17(19):12786-95. PubMed ID: 25907247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the Organic and Inorganic Passivation Mechanism of ZnO Nanowires for Construction of Efficient Bulk Heterojunction Quantum Dot Solar Cells.
    Wei Y; Nakamura M; Ding C; Liu D; Li H; Li Y; Yang Y; Wang D; Wang R; Hayase S; Masuda T; Shen Q
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36268-36276. PubMed ID: 35894431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review on the Effects of ZnO Nanowire Morphology on the Performance of Interpenetrating Bulk Heterojunction Quantum Dot Solar Cells.
    Xing M; Wang L; Wang R
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient PbS Quantum Dot Solar Cells with Both Mg-Doped ZnO Window Layer and ZnO Nanocrystal Interface Passivation Layer.
    Ren H; Xu A; Pan Y; Qin D; Hou L; Wang D
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33467785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of a Combustion-Reacted High-Performance ZnO Electron Transport Layer with Silver Nanowire Electrodes for Organic Solar Cells.
    Park M; Lee SH; Kim D; Kang J; Lee JY; Han SM
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7214-7222. PubMed ID: 29400440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic solar cells based on three-dimensionally percolated polythiophene nanowires with enhanced charge transport.
    Kim JH; Kim M; Jinnai H; Shin TJ; Kim H; Park JH; Jo SB; Cho K
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5640-50. PubMed ID: 24666036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capacitive and Efficient Near-Infrared Stimulation of Neurons via an Ultrathin AgBiS
    Balamur R; Oh JT; Karatum O; Wang Y; Onal A; Kaleli HN; Pehlivan C; Şahin A; Hasanreisoglu M; Konstantatos G; Nizamoglu S
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):29610-29620. PubMed ID: 38807565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmentally benign and efficient Ag2S-ZnO nanowires as photoanodes for solar cells: comparison with CdS-ZnO nanowires.
    Hwang I; Yong K
    Chemphyschem; 2013 Feb; 14(2):364-8. PubMed ID: 23233308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Cost RoHS Compliant Solution Processed Photovoltaics Enabled by Ambient Condition Synthesis of AgBiS
    Akgul MZ; Figueroba A; Pradhan S; Bi Y; Konstantatos G
    ACS Photonics; 2020 Mar; 7(3):588-595. PubMed ID: 32215281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing the Synthetic Conditions of "Green" Colloidal AgBiS
    Li Q; Zheng X; Shen X; Ding S; Feng H; Wu G; Zhang Y
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.