BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33448801)

  • 1. Lithiation/Delithiation Properties of Lithium Silicide Electrodes in Ionic-Liquid Electrolytes.
    Domi Y; Usui H; Ieuji N; Nishikawa K; Sakaguchi H
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3816-3824. PubMed ID: 33448801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction Behavior of a Silicide Electrode with Lithium in an Ionic-Liquid Electrolyte.
    Domi Y; Usui H; Sugimoto K; Gotoh K; Nishikawa K; Sakaguchi H
    ACS Omega; 2020 Sep; 5(35):22631-22636. PubMed ID: 32923823
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Endo R; Ohnishi T; Takada K; Masuda T
    J Phys Chem Lett; 2020 Aug; 11(16):6649-6654. PubMed ID: 32787227
    [No Abstract]   [Full Text] [Related]  

  • 4. Silicon-Based Anodes with Long Cycle Life for Lithium-Ion Batteries Achieved by Significant Suppression of Their Volume Expansion in Ionic-Liquid Electrolyte.
    Domi Y; Usui H; Yamaguchi K; Yodoya S; Sakaguchi H
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):2950-2960. PubMed ID: 30608119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries.
    Lindgren F; Xu C; Niedzicki L; Marcinek M; Gustafsson T; Björefors F; Edström K; Younesi R
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15758-66. PubMed ID: 27220376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Low Temperatures on the Lithiation and Delithiation Properties of Si-Based Electrodes in Ionic Liquid Electrolytes.
    Domi Y; Usui H; Hirosawa T; Sugimoto K; Nakano T; Ando A; Sakaguchi H
    ACS Omega; 2022 May; 7(18):15846-15853. PubMed ID: 35571775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable Cycle Performance of a Phosphorus Negative Electrode in Lithium-Ion Batteries Derived from Ionic Liquid Electrolytes.
    Kaushik S; Matsumoto K; Hagiwara R
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):10891-10901. PubMed ID: 33630586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: how does vinylene carbonate play its role as an electrolyte additive?
    Wang Y; Nakamura S; Tasaki K; Balbuena PB
    J Am Chem Soc; 2002 Apr; 124(16):4408-21. PubMed ID: 11960470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic to Nanoscale Origin of Vinylene Carbonate Enhanced Cycling Stability of Lithium Metal Anode Revealed by Cryo-Transmission Electron Microscopy.
    Xu Y; Wu H; He Y; Chen Q; Zhang JG; Xu W; Wang C
    Nano Lett; 2020 Jan; 20(1):418-425. PubMed ID: 31816244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li-M-Si Ternaries (M = Mg, Zn, Al, Ca).
    Han B; Liao C; Dogan F; Trask SE; Lapidus SH; Vaughey JT; Key B
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29780-29790. PubMed ID: 31318201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of Thin Lithium Metal Electrodes in Carbonate Electrolytes with Realistic Parameters.
    Zhang J; Shi J; Wen X; Zhao Y; Guo J
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32863-32870. PubMed ID: 32584024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavior of Germanium and Silicon Nanowire Anodes with Ionic Liquid Electrolytes.
    Kim GT; Kennedy T; Brandon M; Geaney H; Ryan KM; Passerini S; Appetecchi GB
    ACS Nano; 2017 Jun; 11(6):5933-5943. PubMed ID: 28530820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Additives on the Electrochemical and Interfacial Properties of SiO
    Sathya S; Angulakshmi N; Ahn JH; Kathiresan M; Stephan AM
    Langmuir; 2022 Mar; 38(8):2423-2434. PubMed ID: 35167306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ceramic-Based Composite Solid Electrolyte for Lithium-Ion Batteries.
    Lim YJ; Kim HW; Lee SS; Kim HJ; Kim JK; Jung YG; Kim Y
    Chempluschem; 2015 Jul; 80(7):1100-1103. PubMed ID: 31973285
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Putra RP; Matsushita K; Ohnishi T; Masuda T
    J Phys Chem Lett; 2024 Jan; 15(2):490-498. PubMed ID: 38190614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Polar Organic Solvents in an Ionic Liquid Containing Lithium Bis(fluorosulfonyl)amide: Effect on the Cation-Anion Interaction, Lithium Ion Battery Performance, and Solid Electrolyte Interphase.
    Lahiri A; Li G; Olschewski M; Endres F
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):34143-34150. PubMed ID: 27960439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-Ion Batteries.
    Cao C; Shyam B; Wang J; Toney MF; Steinrück HG
    Acc Chem Res; 2019 Sep; 52(9):2673-2683. PubMed ID: 31479242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composition Modulation of Ionic Liquid Hybrid Electrolyte for 5 V Lithium-Ion Batteries.
    Wu CJ; Rath PC; Patra J; Bresser D; Passerini S; Umesh B; Dong QF; Lee TC; Chang JK
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42049-42056. PubMed ID: 31633334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries.
    Reyes Jiménez A; Klöpsch R; Wagner R; Rodehorst UC; Kolek M; Nölle R; Winter M; Placke T
    ACS Nano; 2017 May; 11(5):4731-4744. PubMed ID: 28437078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.