These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 33448831)
1. Chitosan/Dextran Hydrogel Constructs Containing Strontium-Doped Hydroxyapatite with Enhanced Osteogenic Potential in Rat Cranium. Ding X; Li X; Li C; Qi M; Zhang Z; Sun X; Wang L; Zhou Y ACS Biomater Sci Eng; 2019 Sep; 5(9):4574-4586. PubMed ID: 33448831 [TBL] [Abstract][Full Text] [Related]
2. Magnesium-Doped Nano-Hydroxyapatite/Polyvinyl Alcohol/Chitosan Composite Hydrogel: Preparation and Characterization. Zhang K; Liu Y; Zhao Z; Shi X; Zhang R; He Y; Zhang H; Wang W Int J Nanomedicine; 2024; 19():651-671. PubMed ID: 38269254 [TBL] [Abstract][Full Text] [Related]
3. Incorporation of strontium-containing bioactive particles into PEOT/PBT electrospun scaffolds for bone tissue regeneration. Tomasina C; Montalbano G; Fiorilli S; Quadros P; Azevedo A; Coelho C; Vitale-Brovarone C; Camarero-Espinosa S; Moroni L Biomater Adv; 2023 Jun; 149():213406. PubMed ID: 37054582 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of osteogenic properties of a novel injectable bone-repair material containing strontium Liu L; Hou S; Xu G; Gao J; Mu J; Gao M; He J; Su X; Yang Z; Liu Y; Chen T; Dong Z; Cheng L; Shi Z Front Bioeng Biotechnol; 2024; 12():1390337. PubMed ID: 38707496 [No Abstract] [Full Text] [Related]
5. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. Dhivya S; Saravanan S; Sastry TP; Selvamurugan N J Nanobiotechnology; 2015 Jun; 13():40. PubMed ID: 26065678 [TBL] [Abstract][Full Text] [Related]
6. Fabrication and in-vitro biocompatibility of freeze-dried CTS-nHA and CTS-nBG scaffolds for bone regeneration applications. Kumar P; Saini M; Dehiya BS; Umar A; Sindhu A; Mohammed H; Al-Hadeethi Y; Guo Z Int J Biol Macromol; 2020 Apr; 149():1-10. PubMed ID: 31923516 [TBL] [Abstract][Full Text] [Related]
7. Interaction of alginate with nano-hydroxyapatite-collagen using strontium provides suitable osteogenic platform. Hassani A; Avci ÇB; Kerdar SN; Amini H; Amini M; Ahmadi M; Sakai S; Bagca BG; Ozates NP; Rahbarghazi R; Khoshfetrat AB J Nanobiotechnology; 2022 Jun; 20(1):310. PubMed ID: 35765003 [TBL] [Abstract][Full Text] [Related]
8. Sphere-shaped nano-hydroxyapatite/chitosan/gelatin 3D porous scaffolds increase proliferation and osteogenic differentiation of human induced pluripotent stem cells from gingival fibroblasts. Ji J; Tong X; Huang X; Wang T; Lin Z; Cao Y; Zhang J; Dong L; Qin H; Hu Q Biomed Mater; 2015 Jul; 10(4):045005. PubMed ID: 26154827 [TBL] [Abstract][Full Text] [Related]
9. [In vitro study on injectable alginate-strontium hydrogel for bone tissue engineering]. Tu Y; Wu T; Ye A; Xu J; Guo F; Cheng X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Dec; 27(12):1499-505. PubMed ID: 24640374 [TBL] [Abstract][Full Text] [Related]
10. Strontium-incorporated mineralized PLLA nanofibrous membranes for promoting bone defect repair. Han X; Zhou X; Qiu K; Feng W; Mo H; Wang M; Wang J; He C Colloids Surf B Biointerfaces; 2019 Jul; 179():363-373. PubMed ID: 30999115 [TBL] [Abstract][Full Text] [Related]
11. Bio-functional strontium-containing photocrosslinked alginate hydrogels for promoting the osteogenic behaviors. Zhao D; Wang X; Tie C; Cheng B; Yang S; Sun Z; Yin M; Li X; Yin M Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112130. PubMed ID: 34082947 [TBL] [Abstract][Full Text] [Related]
12. Preparation and Characterization of Carboxymethyl Chitosan/Sodium Alginate Composite Hydrogel Scaffolds Carrying Chlorhexidine and Strontium-Doped Hydroxyapatite. Liu Z; Li S; Xu Z; Li L; Liu Y; Gao X; Diao Y; Chen L; Sun J ACS Omega; 2024 May; 9(20):22230-22239. PubMed ID: 38799338 [TBL] [Abstract][Full Text] [Related]
13. Constructing a biomimetic nanocomposite with the Song T; Zhao F; Wang Y; Li D; Lei N; Li X; Xiao Y; Zhang X J Mater Chem B; 2021 Mar; 9(10):2469-2482. PubMed ID: 33646220 [TBL] [Abstract][Full Text] [Related]
15. The osteogenesis and the biologic mechanism of thermo-responsive injectable hydrogel containing carboxymethyl chitosan/sodium alginate nanoparticles towards promoting osteal wound healing. Shi Z; Yang F; Pang Q; Hu Y; Wu H; Yu X; Chen X; Shi L; Wen B; Xu R; Hou R; Liu D; Pang Q; Zhu Y Int J Biol Macromol; 2023 Jan; 224():533-543. PubMed ID: 36265540 [TBL] [Abstract][Full Text] [Related]
16. Engineering an injectable gellan gum-based hydrogel with osteogenesis and angiogenesis for bone regeneration. Liu H; Li K; Guo B; Yuan Y; Ruan Z; Long H; Zhu J; Zhu Y; Chen C Tissue Cell; 2024 Feb; 86():102279. PubMed ID: 38007880 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of Wang N; Qi D; Liu L; Zhu Y; Liu H; Zhu S Front Bioeng Biotechnol; 2022; 10():831288. PubMed ID: 35295654 [TBL] [Abstract][Full Text] [Related]
18. In vitro proliferation and osteogenic differentiation of human dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel. Chen Y; Zhang F; Fu Q; Liu Y; Wang Z; Qi N J Biomater Appl; 2016 Sep; 31(3):317-27. PubMed ID: 27496540 [TBL] [Abstract][Full Text] [Related]
20. Ectopic osteogenesis and scaffold biodegradation of nano-hydroxyapatite-chitosan in a rat model. He Y; Dong Y; Cui F; Chen X; Lin R PLoS One; 2015; 10(8):e0135366. PubMed ID: 26258851 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]