These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33448854)

  • 1. 1,3-Dipolar Cycloadditions by a Unified Perspective Based on Conceptual and Thermodynamics Models of Chemical Reactivity.
    Barrales-Martínez C; Martínez-Araya JI; Jaque P
    J Phys Chem A; 2021 Jan; 125(3):801-815. PubMed ID: 33448854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deeper analysis of the role of synchronicity on the Bell-Evans-Polanyi plot in multibond chemical reactions: a path-dependent reaction force constant.
    Barrales-Martínez C; Jaque P
    Phys Chem Chem Phys; 2022 Jun; 24(24):14772-14779. PubMed ID: 35686531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models.
    Ess DH; Houk KN
    J Am Chem Soc; 2008 Aug; 130(31):10187-98. PubMed ID: 18613669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Assessment of a Criterion for the Application of Brønsted-Evans-Polanyi Relations for Dissociation Catalytic Reactions at Surfaces.
    Ding ZB; Maestri M
    Ind Eng Chem Res; 2019 Jun; 58(23):9864-9874. PubMed ID: 31303692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. When is the Bell-Evans-Polanyi principle fulfilled in Diels-Alder reactions of fullerenes?
    Pla P; Wang Y; Alcamí M
    Phys Chem Chem Phys; 2020 Apr; 22(16):8846-8852. PubMed ID: 32285866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Distortion of Cycloalkynes Influences Cycloaddition Rates both by Strain and Interaction Energies.
    Hamlin TA; Levandowski BJ; Narsaria AK; Houk KN; Bickelhaupt FM
    Chemistry; 2019 May; 25(25):6342-6348. PubMed ID: 30779472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation-strain analysis reveals unexpected origin of fast reactivity in heteroaromatic azadiene inverse-electron-demand diels-alder cycloadditions.
    Talbot A; Devarajan D; Gustafson SJ; Fernández I; Bickelhaupt FM; Ess DH
    J Org Chem; 2015 Jan; 80(1):548-58. PubMed ID: 25490250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of the ETS-NOCV method in descriptions of chemical reactions.
    Mitoraj MP; Parafiniuk M; Srebro M; Handzlik M; Buczek A; Michalak A
    J Mol Model; 2011 Sep; 17(9):2337-52. PubMed ID: 21445707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the 1,3-Dipolar Cycloadditions of Allenes.
    Yu S; Vermeeren P; van Dommelen K; Bickelhaupt FM; Hamlin TA
    Chemistry; 2020 Sep; 26(50):11529-11539. PubMed ID: 32220086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cycloaddition Reactivities Analyzed by Energy Decomposition Analyses and the Frontier Molecular Orbital Model.
    Sengupta A; Li B; Svatunek D; Liu F; Houk KN
    Acc Chem Res; 2022 Sep; 55(17):2467-2479. PubMed ID: 36007242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of (5 + 2) Cycloadditions Involving Oxidopyrylium and Oxidopyridinium Ions: Relative Reactivities.
    Lu Y; Tantillo DJ
    J Org Chem; 2021 Jul; 86(13):8652-8659. PubMed ID: 34111355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of 1,3-dipolar cycloadditions: energy partitioning of reactants and quantitation of synchronicity.
    Xu L; Doubleday CE; Houk KN
    J Am Chem Soc; 2010 Mar; 132(9):3029-37. PubMed ID: 20148587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular mesoionics: understanding and controlling regioselectivity in 1,3-dipolar cycloadditions of Münchnone derivatives.
    Morin MS; St-Cyr DJ; Arndtsen BA; Krenske EH; Houk KN
    J Am Chem Soc; 2013 Nov; 135(46):17349-58. PubMed ID: 24134494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theory for bioinorganic chemical reactivity of oxometal complexes and analogous oxidants: the exchange and orbital-selection rules.
    Usharani D; Janardanan D; Li C; Shaik S
    Acc Chem Res; 2013 Feb; 46(2):471-82. PubMed ID: 23210564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraordinary Difference in Reactivity of Ozone (OOO) and Sulfur Dioxide (OSO): A Theoretical Study.
    Lan Y; Wheeler SE; Houk KN
    J Chem Theory Comput; 2011 Jul; 7(7):2104-11. PubMed ID: 26606482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dimensionless reaction coordinate for quantifying the lateness of transition states.
    Manz TA; Sholl DS
    J Comput Chem; 2010 May; 31(7):1528-41. PubMed ID: 19908292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational study of the 1,3-dipolar cycloaddition between methyl 2-trifluorobutynoate and substituted azides in terms of reactivity indices and activation parameters.
    Salah M; Komiha N; Kabbaj OK; Ghailane R; Marakchi K
    J Mol Graph Model; 2017 May; 73():143-151. PubMed ID: 28279822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The valence bond way: reactivity patterns of cytochrome P450 enzymes and synthetic analogs.
    Shaik S; Lai W; Chen H; Wang Y
    Acc Chem Res; 2010 Aug; 43(8):1154-65. PubMed ID: 20527755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent effect on the degree of (a)synchronicity in polar Diels-Alder reactions from the perspective of the reaction force constant analysis.
    Yepes D; Martínez-Araya JI; Jaque P
    J Mol Model; 2017 Dec; 24(1):33. PubMed ID: 29288466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Woodward-Hoffmann rules reinterpreted by conceptual density functional theory.
    Geerlings P; Ayers PW; Toro-Labbé A; Chattaraj PK; De Proft F
    Acc Chem Res; 2012 May; 45(5):683-95. PubMed ID: 22283422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.