These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33448855)

  • 21. [2,2] Paracyclophanes-based double helicates for constructing artificial light-harvesting systems and white LED device.
    Lian Z; He J; Liu L; Fan Y; Chen X; Jiang H
    Nat Commun; 2023 May; 14(1):2752. PubMed ID: 37173318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A sequential light-harvesting system with thermosensitive colorimetric emission in both aqueous solution and hydrogel.
    Tang L; Wu Z; Zhang Q; Hu Q; Dang X; Cui F; Tang L; Xiao T
    Chem Commun (Camb); 2024 Apr; 60(35):4719-4722. PubMed ID: 38597206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Supramolecular Sequential Light-Harvesting Systems for Constructing White LED Device and Latent Fingerprint Imaging.
    Zhang Q; Cui F; Dang X; Wang Q; Li ZY; Sun XQ; Xiao T
    Chemistry; 2024 Jul; 30(41):e202401426. PubMed ID: 38757380
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aqueous Platinum(II)-Cage-Based Light-Harvesting System for Photocatalytic Cross-Coupling Hydrogen Evolution Reaction.
    Zhang Z; Zhao Z; Hou Y; Wang H; Li X; He G; Zhang M
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8862-8866. PubMed ID: 31034686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Constructing Artificial Light-Harvesting Systems by Covalent Alignment of Aggregation-Induced Emission Molecules.
    Liu S; Jiang S; Xu J; Huang Z; Li F; Fan X; Luo Q; Tian W; Liu J; Xu B
    Macromol Rapid Commun; 2019 May; 40(9):e1800892. PubMed ID: 30791167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient Artificial Light-Harvesting System Based on Supramolecular Peptide Nanotubes in Water.
    Song Q; Goia S; Yang J; Hall SCL; Staniforth M; Stavros VG; Perrier S
    J Am Chem Soc; 2021 Jan; 143(1):382-389. PubMed ID: 33348987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A bioinspired sequential energy transfer system constructed via supramolecular copolymerization.
    Han Y; Zhang X; Ge Z; Gao Z; Liao R; Wang F
    Nat Commun; 2022 Jun; 13(1):3546. PubMed ID: 35729110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems.
    Wasielewski MR
    Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modular Homogeneous Chromophore-Catalyst Assemblies.
    Mulfort KL; Utschig LM
    Acc Chem Res; 2016 May; 49(5):835-43. PubMed ID: 27104312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly Efficient Artificial Light-Harvesting Systems Constructed in an Aqueous Solution Based on Twisted Cucurbit[14]Uril.
    Luo Y; Zhang W; Ren Q; Tao Z; Xiao X
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):29806-29812. PubMed ID: 35748110
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembled metallasupramolecular cages towards light harvesting systems for oxidative cyclization.
    Kumar A; Saha R; Mukherjee PS
    Chem Sci; 2021 Mar; 12(14):5319-5329. PubMed ID: 34163765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Platinum Metallacycle-Based Molecular Recognition: Establishment and Application in Spontaneous Formation of a [2]Rotaxane with Light-Harvesting Property.
    Shi B; Li X; Chai Y; Qin P; Zhou Y; Qu WJ; Lin Q; Wei TB; Sun Y; Stang PJ
    Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202305767. PubMed ID: 37280162
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Supramolecular polymer-directed light-harvesting system based on a stepwise energy transfer cascade.
    Xiao T; Zhang L; Wu H; Qian H; Ren D; Li ZY; Sun XQ
    Chem Commun (Camb); 2021 Jun; 57(47):5782-5785. PubMed ID: 33998620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A cavitand-based supramolecular artificial light-harvesting system with sequential energy transfer for photocatalysis.
    Liu Q; Zuo M; Wang K; Hu XY
    Chem Commun (Camb); 2023 Nov; 59(92):13707-13710. PubMed ID: 37905993
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient Light-Harvesting Systems with Tunable Emission through Controlled Precipitation in Confined Nanospace.
    Li C; Zhang J; Zhang S; Zhao Y
    Angew Chem Int Ed Engl; 2019 Feb; 58(6):1643-1647. PubMed ID: 30418700
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequential energy transfer driven by monoexponential dynamics in a biohybrid light-harvesting complex 2 (LH2).
    Yoneda Y; Kato D; Kondo M; Nagashima KVP; Miyasaka H; Nagasawa Y; Dewa T
    Photosynth Res; 2020 Feb; 143(2):115-128. PubMed ID: 31620983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-assembled nanoscale DNA-porphyrin complex for artificial light harvesting.
    Woller JG; Hannestad JK; Albinsson B
    J Am Chem Soc; 2013 Feb; 135(7):2759-68. PubMed ID: 23350631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bimodal intramolecular excitation energy transfer in a multichromophore photosynthetic model system: hybrid fusion proteins comprising natural phycobilin- and artificial chlorophyll-binding domains.
    Zeng XL; Tang K; Zhou N; Zhou M; Hou HJ; Scheer H; Zhao KH; Noy D
    J Am Chem Soc; 2013 Sep; 135(36):13479-87. PubMed ID: 23941594
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Preparation of a Water-Soluble Phospholate-Based Macrocycle for Constructing Artificial Light-Harvesting Systems.
    Jiao J; Sun G; Zhang J; Lin C; Jiang J; Wang L
    Chemistry; 2021 Dec; 27(67):16601-16605. PubMed ID: 34596928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.