These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33448855)

  • 61. Construction of artificial light-harvesting systems based on a variety of polyelectrolyte materials and application in photocatalysis.
    Ma CQ; Han N; Zhang RZ; Wang Y; Dong RZ; Liu H; Wang RZ; Yu S; Wang YB; Xing LB
    J Colloid Interface Sci; 2023 Mar; 634():54-62. PubMed ID: 36528971
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Diblock copolymer micelles and supported films with noncovalently incorporated chromophores: a modular platform for efficient energy transfer.
    Adams PG; Collins AM; Sahin T; Subramanian V; Urban VS; Vairaprakash P; Tian Y; Evans DG; Shreve AP; Montaño GA
    Nano Lett; 2015 Apr; 15(4):2422-8. PubMed ID: 25719733
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A Conjugated Polymeric Supramolecular Network with Aggregation-Induced Emission Enhancement: An Efficient Light-Harvesting System with an Ultrahigh Antenna Effect.
    Xu L; Wang Z; Wang R; Wang L; He X; Jiang H; Tang H; Cao D; Tang BZ
    Angew Chem Int Ed Engl; 2020 Jun; 59(25):9908-9913. PubMed ID: 31336023
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Far-Red Carbon Dots as Efficient Light-Harvesting Agents for Enhanced Photosynthesis.
    Li D; Li W; Zhang H; Zhang X; Zhuang J; Liu Y; Hu C; Lei B
    ACS Appl Mater Interfaces; 2020 May; 12(18):21009-21019. PubMed ID: 32281782
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Functionalized dye encapsulated polymer nanoparticles attached with a BSA scaffold as efficient antenna materials for artificial light harvesting.
    Jana B; Bhattacharyya S; Patra A
    Nanoscale; 2016 Sep; 8(35):16034-43. PubMed ID: 27546792
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion.
    King PW
    Biochim Biophys Acta; 2013; 1827(8-9):949-57. PubMed ID: 23541891
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Photosynthetic Properties and Potentials for Improvement of Photosynthesis in Pale Green Leaf Rice under High Light Conditions.
    Gu J; Zhou Z; Li Z; Chen Y; Wang Z; Zhang H; Yang J
    Front Plant Sci; 2017; 8():1082. PubMed ID: 28676818
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An Artificial Light-Harvesting System with Controllable Efficiency Enabled by an Annulene-Based Anisotropic Fluid.
    Yu Z; Bisoyi HK; Chen XM; Nie ZZ; Wang M; Yang H; Li Q
    Angew Chem Int Ed Engl; 2022 Apr; 61(16):e202200466. PubMed ID: 35100478
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Metal-organic frameworks for artificial photosynthesis and photocatalysis.
    Zhang T; Lin W
    Chem Soc Rev; 2014 Aug; 43(16):5982-93. PubMed ID: 24769551
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Photosynthetic antenna-reaction center mimicry by using boron dipyrromethene sensitizers.
    El-Khouly ME; Fukuzumi S; D'Souza F
    Chemphyschem; 2014 Jan; 15(1):30-47. PubMed ID: 24243758
    [TBL] [Abstract][Full Text] [Related]  

  • 71. One-Dimensional Multichromophor Arrays Based on DNA: From Self-Assembly to Light-Harvesting.
    Ensslen P; Wagenknecht HA
    Acc Chem Res; 2015 Oct; 48(10):2724-33. PubMed ID: 26411920
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Proteoliposomes as energy transferring nanomaterials: enhancing the spectral range of light-harvesting proteins using lipid-linked chromophores.
    Hancock AM; Meredith SA; Connell SD; Jeuken LJC; Adams PG
    Nanoscale; 2019 Sep; 11(35):16284-16292. PubMed ID: 31465048
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Bio-mimic energy storage system with solar light conversion to hydrogen by combination of photovoltaic devices and electrochemical cells inspired by the antenna-associated photosystem II.
    Koike K; Fujii K; Kawano T; Wada S
    Plant Signal Behav; 2020 Mar; 15(3):1723946. PubMed ID: 32046585
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hybrid Catalysts for Artificial Photosynthesis: Merging Approaches from Molecular, Materials, and Biological Catalysis.
    Smith PT; Nichols EM; Cao Z; Chang CJ
    Acc Chem Res; 2020 Mar; 53(3):575-587. PubMed ID: 32124601
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Significant enhancement in the power-conversion efficiency of chlorophyll co-sensitized solar cells by mimicking the principles of natural photosynthetic light-harvesting complexes.
    Wang XF; Koyama Y; Kitao O; Wada Y; Sasaki SI; Tamiaki H; Zhou H
    Biosens Bioelectron; 2010 Apr; 25(8):1970-6. PubMed ID: 20149628
    [TBL] [Abstract][Full Text] [Related]  

  • 77. An allosteric photoredox catalyst inspired by photosynthetic machinery.
    Lifschitz AM; Young RM; Mendez-Arroyo J; Stern CL; McGuirk CM; Wasielewski MR; Mirkin CA
    Nat Commun; 2015 Mar; 6():6541. PubMed ID: 25817586
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Simple and Efficient System for Combined Solar Energy Harvesting and Reversible Hydrogen Storage.
    Li L; Mu X; Liu W; Mi Z; Li CJ
    J Am Chem Soc; 2015 Jun; 137(24):7576-9. PubMed ID: 26059734
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.
    Kumar CV; Duff MR
    Photochem Photobiol Sci; 2008 Dec; 7(12):1522-30. PubMed ID: 19037505
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Stimulus-responsive light-harvesting complexes based on the pillararene-induced co-assembly of β-carotene and chlorophyll.
    Sun Y; Guo F; Zuo T; Hua J; Diao G
    Nat Commun; 2016 Jun; 7():12042. PubMed ID: 27345928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.