These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33448855)

  • 81. A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2.
    Yadav RK; Baeg JO; Oh GH; Park NJ; Kong KJ; Kim J; Hwang DW; Biswas SK
    J Am Chem Soc; 2012 Jul; 134(28):11455-61. PubMed ID: 22769600
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Sequential energy and electron transfer in a three-component system aligned on a clay nanosheet.
    Fujimura T; Ramasamy E; Ishida Y; Shimada T; Takagi S; Ramamurthy V
    Phys Chem Chem Phys; 2016 Feb; 18(7):5404-11. PubMed ID: 26820105
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Multichromophoric organic molecules encapsulated in polymer nanoparticles for artificial light harvesting.
    Bhattacharyya S; Jana B; Patra A
    Chemphyschem; 2015 Mar; 16(4):796-804. PubMed ID: 25600650
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage.
    Kalyanasundaram K; Graetzel M
    Curr Opin Biotechnol; 2010 Jun; 21(3):298-310. PubMed ID: 20439158
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Energy Transfer Kinetics in Photosynthesis as an Inspiration for Improving Organic Solar Cells.
    Nganou C; Lackner G; Teschome B; Deen MJ; Adir N; Pouhe D; Lupascu DC; Mkandawire M
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19030-19039. PubMed ID: 28497947
    [TBL] [Abstract][Full Text] [Related]  

  • 86. DNA-directed artificial light-harvesting antenna.
    Dutta PK; Varghese R; Nangreave J; Lin S; Yan H; Liu Y
    J Am Chem Soc; 2011 Aug; 133(31):11985-93. PubMed ID: 21714548
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Cascade exciton-pumping engines with manipulated speed and efficiency in light-harvesting porous π-network films.
    Gu C; Huang N; Xu F; Gao J; Jiang D
    Sci Rep; 2015 Mar; 5():8867. PubMed ID: 25746459
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Energy transfer between two light harvesting phthalocyanine derivatives as model for artificial photosynthetic antenna: Laser photolysis studies.
    El-Khouly ME
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Dec; 205():508-513. PubMed ID: 30064115
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies.
    Frischmann PD; Mahata K; Würthner F
    Chem Soc Rev; 2013 Feb; 42(4):1847-70. PubMed ID: 22850767
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Micelle-Induced Self-Assembling Protein Nanowires: Versatile Supramolecular Scaffolds for Designing the Light-Harvesting System.
    Sun H; Zhang X; Miao L; Zhao L; Luo Q; Xu J; Liu J
    ACS Nano; 2016 Jan; 10(1):421-8. PubMed ID: 26634314
    [TBL] [Abstract][Full Text] [Related]  

  • 91. DNA-based supramolecular artificial light harvesting complexes.
    Kumar CV; Duff MR
    J Am Chem Soc; 2009 Nov; 131(44):16024-6. PubMed ID: 19845378
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Biomimetic Donor-Acceptor Motifs in Conjugated Polymers for Promoting Exciton Splitting and Charge Separation.
    Ou H; Chen X; Lin L; Fang Y; Wang X
    Angew Chem Int Ed Engl; 2018 Jul; 57(28):8729-8733. PubMed ID: 29797759
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Hybrid bioinorganic approach to solar-to-chemical conversion.
    Nichols EM; Gallagher JJ; Liu C; Su Y; Resasco J; Yu Y; Sun Y; Yang P; Chang MC; Chang CJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11461-6. PubMed ID: 26305947
    [TBL] [Abstract][Full Text] [Related]  

  • 94. An enzymatically-sensitized sequential and concentric energy transfer relay self-assembled around semiconductor quantum dots.
    Samanta A; Walper SA; Susumu K; Dwyer CL; Medintz IL
    Nanoscale; 2015 May; 7(17):7603-14. PubMed ID: 25804284
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Photophysical probes for multiple-redox and multiple-excited-state interactions in molecular aggregates.
    Fox MA
    Acc Chem Res; 2012 Nov; 45(11):1875-86. PubMed ID: 23004222
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis.
    Wasielewski MR
    J Org Chem; 2006 Jul; 71(14):5051-66. PubMed ID: 16808492
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Multiscale model of light harvesting by photosystem II in plants.
    Amarnath K; Bennett DI; Schneider AR; Fleming GR
    Proc Natl Acad Sci U S A; 2016 Feb; 113(5):1156-61. PubMed ID: 26787911
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Ligand-Triggered Platinum(II) Metallacycle with Mechanochromic and Vapochromic Responses.
    Yin Y; Chen Z; Li RH; Yuan C; Shao TY; Wang K; Tan H; Sun Y
    Inorg Chem; 2021 Jul; 60(13):9387-9393. PubMed ID: 33881317
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A photosynthetic antenna complex foregoes unity carotenoid-to-bacteriochlorophyll energy transfer efficiency to ensure photoprotection.
    Niedzwiedzki DM; Swainsbury DJK; Canniffe DP; Hunter CN; Hitchcock A
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6502-6508. PubMed ID: 32139606
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Biohybrid photosynthetic antenna complexes for enhanced light-harvesting.
    Springer JW; Parkes-Loach PS; Reddy KR; Krayer M; Jiao J; Lee GM; Niedzwiedzki DM; Harris MA; Kirmaier C; Bocian DF; Lindsey JS; Holten D; Loach PA
    J Am Chem Soc; 2012 Mar; 134(10):4589-99. PubMed ID: 22375881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.