These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33448970)

  • 1. Far-field optical path noise coupled with the pointing jitter in the space measurement of gravitational waves.
    Zhao Y; Shen J; Fang C; Wang Z; Gao R; Sha W
    Appl Opt; 2021 Jan; 60(2):438-444. PubMed ID: 33448970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tilt-to-length noise coupled by wavefront errors in the interfering beams for the space measurement of gravitational waves.
    Zhao Y; Shen J; Fang C; Liu H; Wang Z; Luo Z
    Opt Express; 2020 Aug; 28(17):25545-25561. PubMed ID: 32907072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of coupling between optical aberration and tilt-to-length noise in a space-based gravitational wave telescope.
    Lin H; Li J; Huang Y; Yu M; Luo J; Wang Z; Wu Y
    Opt Express; 2023 Jan; 31(3):4367-4378. PubMed ID: 36785407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing phase noise coupled by wavefront errors in optical telescopes for the space measurement of gravitational waves.
    Chen S; Wang C; Jiang H; Sun H; Tao Z
    Opt Express; 2022 Oct; 30(21):37648-37663. PubMed ID: 36258349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser acquisition experimental demonstration for space gravitational wave detection missions.
    Gao R; Liu H; Zhao Y; Luo Z; Shen J; Jin G
    Opt Express; 2021 Mar; 29(5):6368-6383. PubMed ID: 33726160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency Division Control of Line-of-Sight Tracking for Space Gravitational Wave Detector.
    Deng H; Meng Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Telescope jitters and phase noise in the LISA interferometer.
    Sasso CP; Mana G; Mottini S
    Opt Express; 2019 Jun; 27(12):16855-16870. PubMed ID: 31252905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon fiber reinforced polymer dimensional stability investigations for use on the laser interferometer space antenna mission telescope.
    Sanjuán J; Preston A; Korytov D; Spector A; Freise A; Dixon G; Livas J; Mueller G
    Rev Sci Instrum; 2011 Dec; 82(12):124501. PubMed ID: 22225234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methodological demonstration of laser beam pointing control for space gravitational wave detection missions.
    Dong YH; Liu HS; Luo ZR; Li YQ; Jin G
    Rev Sci Instrum; 2014 Jul; 85(7):074501. PubMed ID: 25085155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inter-spacecraft offset frequency setting strategy in the Taiji program.
    Zhang J; Yang Z; Ma X; Peng X; Liu H; Tang W; Zhao M; Gao C; Qiang LE; Han X; Liu B
    Appl Opt; 2022 Jan; 61(3):837-843. PubMed ID: 35200792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Note: silicon carbide telescope dimensional stability for space-based gravitational wave detectors.
    Sanjuán J; Korytov D; Mueller G; Spannagel R; Braxmaier C; Preston A; Livas J
    Rev Sci Instrum; 2012 Nov; 83(11):116107. PubMed ID: 23206114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beam jitter coupling in advanced LIGO.
    Mueller G
    Opt Express; 2005 Sep; 13(18):7118-32. PubMed ID: 19498735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential phase-noise properties of a ytterbium-doped fiber amplifier for the Laser Interferometer Space Antenna.
    Tröbs M; Barke S; Theeg T; Kracht D; Heinzel G; Danzmann K
    Opt Lett; 2010 Feb; 35(3):435-7. PubMed ID: 20125746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental scheme and noise analysis of weak-light phase locked loop for large-scale intersatellite laser interferometer.
    Liang YR; Feng YJ; Xiao GY; Jiang YZ; Li L; Jin XL
    Rev Sci Instrum; 2021 Dec; 92(12):124501. PubMed ID: 34972474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New method for gravitational wave detection with atomic sensors.
    Graham PW; Hogan JM; Kasevich MA; Rajendran S
    Phys Rev Lett; 2013 Apr; 110(17):171102. PubMed ID: 23679702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gravitational Wave Detection by Interferometry (Ground and Space).
    Pitkin M; Reid S; Rowan S; Hough J
    Living Rev Relativ; 2011; 14(1):5. PubMed ID: 28163618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interferometric antenna response for gravitational-wave detection.
    Fabbro RD; Montelatici V
    Appl Opt; 1995 Jul; 34(21):4380-96. PubMed ID: 21052273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic, high-speed, high-precision acquisition scheme with QPD for the Taiji program.
    Gao R; Liu H; Zhao Y; Luo Z; Jin G
    Opt Express; 2021 Jan; 29(2):821-836. PubMed ID: 33726310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interferometric characterization and modeling of pathlength errors resulting from beamwalk across mirror surfaces in LISA.
    Kögel H; Gerardi D; Pijnenburg J; Gohlke M; Schuldt T; Johann U; Braxmaier C; Weise D
    Appl Opt; 2013 May; 52(15):3516-25. PubMed ID: 23736238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gravitational wave detection using laser interferometry beyond the standard quantum limit.
    Heurs M
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.