These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 33448982)

  • 1. Tunable pulse advancement and delay by frequency-chirped stimulated Raman gain with optical nanofiber.
    Qi Y; Jin W; Ho HL
    Opt Lett; 2021 Jan; 46(2):178-181. PubMed ID: 33448982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral-temporal dynamics of high power Raman picosecond pulse using H
    Benoît A; Ilinova E; Beaudou B; Debord B; Gérôme F; Benabid F
    Opt Lett; 2017 Oct; 42(19):3896-3899. PubMed ID: 28957155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow and fast light via SBS in optical fibers for short pulses and broadband pump.
    Kalosha VP; Chen L; Bao X
    Opt Express; 2006 Dec; 14(26):12693-703. PubMed ID: 19532161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Communication: transfer of more than half the population to a selected rovibrational state of H2 by Stark-induced adiabatic Raman passage.
    Mukherjee N; Dong W; Harrison JA; Zare RN
    J Chem Phys; 2013 Feb; 138(5):051101. PubMed ID: 23406090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow-light based tunable delay and narrowband comb filtering at 2  μm.
    Mk V; Mishra A; Pant R
    Opt Lett; 2019 Nov; 44(21):5278-5281. PubMed ID: 31674987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intra-pulse Raman frequency shift versus conventional Stokes generation of diode laser pulses in optical fibers.
    Kuzin E; Mendoza-Vazquez S; Gutierrez-Gutierrez J; Ibarra-Escamilla B; Haus J; Rojas-Laguna R
    Opt Express; 2005 May; 13(9):3388-96. PubMed ID: 19495241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical study of pulse amplification in silicon Raman amplifiers.
    Rukhlenko ID; Premaratne M; Garanovich IL; Sukhorukov AA; Agrawal GP
    Opt Express; 2010 Aug; 18(17):18324-38. PubMed ID: 20721225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low frequency Raman gain measurements using chirped pulses.
    Dogariu A; Hagan D
    Opt Express; 1997 Aug; 1(3):73-6. PubMed ID: 19373383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surpassing the tuning speed limit of slow-light-based tunable optical delay via four-wave mixing Bragg scattering.
    Zhang N; Fu X; Liu J; Shu C
    Opt Lett; 2018 Sep; 43(17):4212-4215. PubMed ID: 30160754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the Spatial Generation of Stimulated Raman Scattering Using Computer Simulation and Experimentation.
    Eriksson R; Gren P; Sjödahl M; Ramser K
    Appl Spectrosc; 2022 Nov; 76(11):1307-1316. PubMed ID: 36281542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technique for measurement of the Raman gain coefficient in optical fibers.
    Mahgerefteh D; Butler DL; Goldhar J; Rosenberg B; Burdge GL
    Opt Lett; 1996 Dec; 21(24):2026-8. PubMed ID: 19881881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-gated pre-resonant femtosecond stimulated Raman spectroscopy of diethylthiatricarbocyanine iodide.
    Kim HM; Kim H; Yang I; Jin SM; Suh YD
    Phys Chem Chem Phys; 2014 Mar; 16(11):5312-8. PubMed ID: 24496293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Launched pulse-shape dependence of the power spectrum of the spontaneous brillouin backscattered light in an optical fiber.
    Naruse H; Tateda M
    Appl Opt; 2000 Dec; 39(34):6376-84. PubMed ID: 18354650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sub-MW peak power diffraction-limited chirped-pulse monolithic Yb-doped tapered fiber amplifier.
    Bobkov K; Andrianov A; Koptev M; Muravyev S; Levchenko A; Velmiskin V; Aleshkina S; Semjonov S; Lipatov D; Guryanov A; Kim A; Likhachev M
    Opt Express; 2017 Oct; 25(22):26958-26972. PubMed ID: 29092178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable slow light via stimulated Brillouin scattering at 2 μm based on Tm-doped fiber amplifiers.
    Wang X; Zhou P; Wang X; Xiao H; Liu Z
    Opt Lett; 2015 Jun; 40(11):2584-7. PubMed ID: 26030563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers.
    Song KY; González Herráez M; Thévenaz L
    Opt Express; 2005 Nov; 13(24):9758-65. PubMed ID: 19503183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Greatly enhanced slow and fast light in chirped pulse semiconductor optical amplifiers: theory and experiments.
    Pesala B; Sedgwick F; Uskov AV; Chang-Hasnain C
    Opt Express; 2009 Feb; 17(4):2188-97. PubMed ID: 19219122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable all-optical pulse compression and stretching via doublet Brillouin gain lines in an optical fiber.
    Qin G; Sakamoto T; Yamamoto N; Kawanishi T; Sotobayashi H; Suzuki T; Ohishi Y
    Opt Lett; 2009 Apr; 34(8):1192-4. PubMed ID: 19370114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering.
    Liu A; Rong H; Paniccia M; Cohen O; Hak D
    Opt Express; 2004 Sep; 12(18):4261-8. PubMed ID: 19483972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superradiant linear Raman amplification in plasma using a chirped pump pulse.
    Ersfeld B; Jaroszynski DA
    Phys Rev Lett; 2005 Oct; 95(16):165002. PubMed ID: 16241811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.